
Orderability and 3-manifold groups

Lectures by: Professor Cameron Gordon



Guest lectures given by Hannah Turner and Jonathan Johnson. Notes by: Jackson Van
Dyke; All errors introduced are my own.



Contents

Chapter 1. Orders on groups; basic definitions and properties 5
1. Orderability of manifold groups 9
2. Three-manifold groups 10
3. Group rings 13
4. BO’s on Z× Z 15
5. BO’s on R 16

Chapter 2. The space of left-orders on a group 17
1. The cantor set 19
2. Surface groups 24

Chapter 3. Three-manifolds 28
1. Higher homotopy groups 29
2. Back to three-manifolds 30

Chapter 4. Seifert fiber(ed) spaces 35
1. Left-orderability of π1 SFS’s 40

Chapter 5. Foliations 46
1. Definition and examples 46
2. Codimension one foliations of three-manifolds 47
3. Reeb stability, transverse loops, and Novikov’s theorem 50
4. Taut foliations 51
5. Coorientable foliations 51
6. The leaf space 52
7. Back to SFS’s 54

Chapter 6. Biorderability 60
1. Residual nilpotence 60
2. Free groups 64
3. Right-angled Artin groups 68
4. Surface groups 70

Chapter 7. L-spaces 73
1. Heegaard splittings 73
2. Heegaard Floer homology 78
3. Double branched covers 87

Appendix A. Homology and cohomology of groups 92
1. Topological point of view 92
2. Algebraic point of view 93

3



CONTENTS 4

3. Group extensions 95

Appendix B. Orderings of the braid group 99
1. Dehornoy’s ordering 100
2. Nielsen-Thurston orderings on Bn 102
3. Isolated orderings 102

Appendix C. Orderability and knot groups 105
1. Generalized torsion 105
2. Knot groups as extensions 106

Appendix. Bibliography 109



CHAPTER 1

Orders on groups; basic definitions and properties

Lecture 1; January
21, 2020

The book for the course is [CR].
Recall that a strict total order (STO) on a set X is a binary relation < which satisfies:

(1) x < y and y < z implies x < z;
(2) ∀x, y ∈ X exactly one of: x < y, y < x, x = y, holds.

A left order (LO) on a group G is an STO such that g < h implies fg < fh for all
f ∈ G. G is left-orderable (LO) if there exists an LO on G. We similarly define a right order
(RO) and right orderability (RO). A bi-order (BO) on G is an LO on G that is also an RO.

Remark 1.1. (1) If G is abelian, < is a LO iff < is an RO iff < is a BO.
(2) If < is an LO on G, then ≺ defined by:

(1.1) g ≺ h ⇐⇒ h−1 < g−1

is an RO on G. Therefore G is LO iff G is RO. We will stick to LO’s.
(3) For H < G, an LO (resp. BO) on G induces an LO (resp. BO) on H.

Example 1.1. (R,+) with the usual < is BO. The subgroups Z < Q < R are also BO.

Lemma 1.1. Let < be an LO on G. Then

(1) g > 1, h > 1 implies gh > 1;
(2) g > 1 implies g−1 < 1;
(3) < is a BO iff

(
g < h =⇒ f−1gf < f−1hf∀f ∈ G

)
(i.e. < is conjugation invari-

ant).

Proof. (1) h > 1 implies gh > g · 1g > 1.
(2) g > 1 implies g−1g > g−1 implies 1 > g−1.
(3) ( =⇒ ) is immediate. (⇐=): We need to show < is a RO. g < h implies fg < fh

implies f−1 (fg) f < f−1 (fh) f which implies gf < hf as desired.
�

Lemma 1.2. If < is a BO on G, then

(1) g < h implies g−1 > h−1;
(2) g1 < h, g2 < h2 implies g1g2 < h1h2.

Proof. (1) If g < h, then g−1g < g−1h, which implies 1 < g−1h, which implies
1 · h−1 < g−1, which implies h−1 < g−1.

(2) g2 < h2 implies g1g2 < g1h2 < h1h2.
�

Warning 1.1. These don’t necessarily true for LO’s.

Lemma 1.3. If G is LO then it is torsion free.

5



1. ORDERS ON GROUPS; BASIC DEFINITIONS AND PROPERTIES 6

Proof. Consider g ∈ G \ {1}. If g > 1, then g2 > g > 1, and similarly for all n ≥ 1,
gn > 1. Similarly g < 1 implies gn < 1 for all n ≥ 1. �

So LO is not preserved under taking quotients (e.g. Z→ Z/n).
Consider an indexed family of groups {Gλ |λ ∈ Λ}. Recall that the direct product

(1.2)
∏
λ∈Λ

Gλ =
{

(gλ)λ∈Λ

}
with multiplication defined co-ordinatewise.

Recall a well-order (WO) on a set X is a STO ≺ on X such that if A ⊂ X and A 6= ∅
then there exists a0 ∈ A such that a0 ≺ a for all a ∈ A \ {a0}. Recall that the axiom of
choice is equivalent to every set having a WO.

Theorem 1.4. Gλ has a LO (resp. BO) for all λ ∈ Λ iff
∏
λ∈ΛGλ has a LO (resp.

BO).

Proof. (⇐=): Gλ <
∏
λGλ so we are finished.

( =⇒ ): Choose a WO ≺ on Λ, and order
∏
λGλ lexicographically. Let g = (gλ),

h = (hλ), g 6= h. Then λ0 be the ≺-least element of Λ such that gλ0
6= hλ0

. Then define
g < h iff gλ0 < hλ0 (in Gλ0). Then < is an LO (resp. BO) on

∏
λGλ. Left (resp. left and

right) invariance is clear. Now we show transitivity. Suppose f < g, g < h. Let λ0 be the
≺-least element of Λ such that fλ0

6= gλ0
. Let µ0 be the ≺-least element of Λ such that

gµ0
6= hµ0

.

(1) (λ0 4 µ0): Then fλ = gλ = hλ for all λ ≺ λ0. Then gλ0
is < (resp. =) hλ0

if
λ0 = µ0 (resp. λ0 ≺ µ0). So fλ0

< gλ0
≤ hλ0

, and therefore fλ0
< hλ0

.
(2) (µ0 < λ0): This follows similarly.

�

Let
∑
λinΛGλ be the direct sum of {Gλ}. Recall this is the subgroup of

∏
λ∈ΛGλ

consisting of elements such that all but finitely many co-ordinates are 1.

Corollary 1.5. Gλ is LO (resp. BO) for all λ ∈ Λ iff
∑
λ∈ΛGλ is LO (resp. BO).

Corollary 1.6. Free abelian groups are BO.

Proof. Free abelian groups on Λ are
∑
λ∈Λ Z. �

Let < be an LO on G. The positive cone P = P< of < is {g ∈ G | g > 1}.

Lemma 1.7. Let P be as above.

(1) g, h ∈ P , implies gh ∈ P (i.e. PP ⊂ P ).
(2) G = P q P−1 q {1}.
(3) < is a BO on G iff f−1Pf ⊂ P for all f ∈ G.

Proof. (1) This follows from Lemma 1.1 (1).
(2) This follows from Lemma 1.1 (2).
(3) This follows from Lemma 1.1 (3).

�

We say P ⊂ G is a positive cone if P satsfies the conditions in Lemma 1.7.

Lemma 1.8. Let P ⊂ G be a positive cone. Then g < h implies g−1h ∈ P defines a LO <
on G (With P< = P ).
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Proof. < is a STO, so:

(i) f < g, g < h implies f−1g ∈ P , g−1h ∈ P , which implies (by the first property)
that

(
f−1g

) (
g−1h

)
∈ P , which implies f < h.

(ii) By the second property, for all g, h ∈ G exactly one of the following holds: g−1h ∈
P , g−1h ∈ P−1, and g−1h = 1. Equivalently, g < h, h < g (since h−1g ∈ P ),
and g = h. Now we show left invariance. g < h implies g−1h ∈ P , but g−1h =(
g−1f−1

)
(fh) which implies fg < fh.

�

Lemmata 1.7 and 1.8 show that:

{LO’s on G} ↔ {positive cones in G}(1.3)

{BO’s on G} ↔ {conjugacy-invariance positive cones in G} .(1.4)

Consider the free group of rank n, Fn.

Theorem 1.9. F2 is LO.

Proof by Sunic. Write F2 = F (a, b). g ∈ F2 implies we can write it as a reduced
word

(1.5) (am1) bn1 . . . amk (bnk)

for k ≥ 0, mi, ni ∈ Z \ {0}. Recall 1 is the empty word, k = 0. Let e (g) be the number
of syllables in g with positive exponent, minus the number of syllables in g with negative
exponent. Then define j (g) so be the number of ambn’s in f , minus the number of bnams
in G. So j (g) = 0, or ±1. For example:

j (a∗ . . . a∗) = 0(1.6)

j (b∗ . . . b∗) = 0(1.7)

j (a∗ . . . b∗) = 1(1.8)

j (b∗ . . . a∗) = −1 .(1.9)

Finally define

(1.10) τ (g) = e (g) + j (g) .

Note that

e
(
g−1

)
= −e (g) j

(
g−1

)
= −j (g) .(1.11)

Lemma 1.10. If g 6= 1, then τ (g) ≡ 1 (mod 2).

Proof. e (f) is congruent to the number of syllables mod 2, and j (g) is congruent to
the number of syllables +1 mod 2. �

Lemma 1.11. |τ (gh)− τ (g)− τ (h)| ≤ 1.

Proof. If gh or g or h = 1 we are done. So suppose gh, g, h 6= 1. Clearly e (gh) =

e (g) + e (h) +

 0
1
−1

. Similarly:

(1.12) j (gh) = j (g) + j (h) +

 0
1
−1

 .
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Therefore:

(1.13) |τ (gh)− τ (g)− τ (H)| ≤ 2

so by Lemma 1.10 we have

(1.14) |τ (gh)− τ (g)− τ (h)| ≤ 1 .

�

Remark 1.2. Lemma 1.11 says that τ : F2 → Z (< R) is what is called a quasi-
morphism.

Define P ⊂ F2 by

(1.15) P = {g ∈ F2 | τ (g) > 0} .
Then F2 = P q P−1 q {1} by Lemma 1.10 and that τ

(
g−1

)
= −τ (g). Then PP ⊂ P by

Lemma 1.11 since

(1.16) τ (gh) ≥ τ (g) + τ (h)− 1 ≥ 1 .

Therefore P is a positive cone for a LO on F2. �

Corollary 1.12. Any countable free group is LO.

Proof. A countable free group is a subgroup of F2. �

Remark 1.3. (1) τ
(
a−1b

)
= 1, so a−1b > 1, so b > a. On the other hand,

τ
(
ab−1

)
= 1, so ab−1 > 1, so b−1 > a−1. So τ does not define a BO on F2.

(2) We will see later that all free groups are LO.
(3) Even later we will see that all free groups are BO.

Theorem 1.13. Let 1→ H → G→ Q→ 1 be a short-exact sequence of groups. Then

(1) H, Q LO implies G is LO;
(2) if Q is BO and H has a BO that is invariant under conjugation in G then G is

BO.

Lecture 2; January
23, 2019

Proof. Write ϕ : G → Q and regard H as kerϕ < G. Let PH (resp. PQ) be positive
cones for LO’s on H (resp. Q). Define P = ϕ−1 (PQ)q PH .

Claim 1.1. P is a positive cone for an LO on G.

Proof. We need to check (1) and (2) from Lemma 1.7. Let g, h ∈ P . Then we want
to show gh ∈ P . We have three cases.

(a) g, h ∈ ϕ−1 (PQ): In this case ϕ (g) , ϕ (h) ∈ PQ, so ϕ (gh) = ϕ (g)ϕ (h) ∈ PQ.
Therefore gh ∈ ϕ−1 (PQ).

(b) g, h ∈ PH : In this case gh ∈ PH .
(c) g ∈ ϕ−1 (PQ), h ∈ PH : Then ϕ (gh) = ϕ (g) ∈ PQ, so gh ∈ ϕ−1 (PQ). Similarly

hg ∈ ϕ−1 (PQ).

Now we need to check P q P−1 q {1}. But this follows from the fact that:

(1.17) G = (H \ {1})q ϕ−1 (Q \ {1})q {1} = ϕ−1 (PQ)q ϕ−1
(
P−1
Q

)
since H \ {1} = PH q P−1

H . �

We leave (2) as an exercise. [Hint: Recall P is a positive cone for BO on G iff it is a
conjugacy invariant cone for an LO.] �
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1. Orderability of manifold groups

Example 1.2. Let X2 be the Klein bottle. This has fundamental group

(1.18) K = π1

(
X2
)

=
〈
a, b
∣∣ b−1ab = a−1

〉
.

This fits in the SES:

(1.19)
1 Z K Z 1

〈a〉 b gm

which means K is LO by Theorem 1.13.
Note that K is not BO. We have that a > 1 iff b−1ab > 1, but this is a−1, so a−1 > 1

which is a contradiction.
Notice that Z has exactly two LO’s. The usual one, and the opposite. Therefore, if we

choose an LO on 〈a〉 and K/ 〈a〉, this gives 4 LO’s on K determined by:

(i) a > 1, b > 1;
(ii) a > 1, b < 1;

(iii) a < 1, b > 1;
(iv) a < 1, b < 1.

Theorem 1.14. These are the only LO’s on K.

Proof. It suffices to show that each of these conditions determines a unique positive
cone.

(i) a > 1, b > 1:

Claim 1.2. ak < b for all k ∈ Z.

Proof. b < ak implies a−kb < 1. But a−kb = bak and b > 1, so b < ak

implies ak > 1, which implies bak > 1 which is a contradiction. �

Note that every element in K has a unique representative of the form ambn

for m,n ∈ Z.

Claim 1.3. ambn > 1 iff either n > 0 or n = 0 and m > 0.

Proof. If n = 0, then this is clear. If n > 0, then amb > 1 for any m by claim
1 (for k = −m). But we also know b > 1 which implies bn > 1, so we get ambn > 1

for n > 0. On the other hand, if m < 0 then ambn = bna±m = (ampmb−n)
−1

.
Then we know ampmb−n > 1 by the case above, so its inverse is < 1. �

If < is an LO on G, and α : G → G is an automorphism, then this induces
an LO <α on G given by: g <α h iff α (g) < α (h). Now notice that there are
automorphisms α1, α2 of K such that

α1 (a) = a , α1 (b) = b−1(1.20)

α1 (a) = a−1 , α1 (b) = b .(1.21)

In particular, α1 is given by

(1.22)
〈
a, b
∣∣ b−1ab = a−1

〉 ∼= 〈a, b ∣∣ bab−1 = a−1
〉

and similarly for α2.
Write <(i) for the unique LO on K determined by (i). Then <(ii) is induced

by <(i) and α1, <(iii) is induced by <(i) and α2, and <(iv) is induced by <(i) and
α1α2.
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�

Fact 1. If G has only finitely many LO’s, then the number of LO’s is of the form 2n.

Exercise 1.1. Show that for all n ≥ 0 there exists a group G with exactly 2n LO’s.

Corollary 1.15. For any LO on K, if h ∈ 〈a〉, g ∈ K \ 〈a〉, and g > 1, then g > h.

Proof. It is sufficient to check this for the first LO, since the other three are determined
by the above automorphisms. Let a > 1, b > 1. By claim 2 from above, we know g = ambn

for n > 0. We now there is some k such that h = ak, and therefore

(1.23) h−1g = am−kbn > 1

by claim 2, so g > h. �

2. Three-manifold groups

Suppose M is a closed, orientable, connected three-manifold. Then we might ask if
π1 (M) is LO? BO?

Immediately we notice that not all such groups are. If M is a lens space, then π1 (M) ∼=
Z/n for n > 1, so this is not LO. More generally, for π1 (M) nontrivial and finite is not LO.
Recall that if M = M1#M2, then this implies π1 (M) ∼= π1 (M1)∗π1 (M2). So, for example,
if M1# lens space, then π1 (M) has torsion, so not LO.

But at least some of them are. Consider M ∼= T 3 = S1 × S1 × S1. Then π1 (M) = Z3

is of course LO. Similarly M = #n

(
S1 × S2

) ∼= Fn, so π1 (M) is LO.
We will show that there exist (three-manifold) groups that are torsion-free, but not LO.
Let p : T 2 → X2 be a two-fold covering of the Klein bottle. Recall that

(1.24) K > p∗
(
π1

(
T 2
))

=
〈
a, b2

〉 ∼= Z× Z .

Let N be the mapping cylinder of p, namely:

(1.25) N =
(
T 2 × I

)
qX2/

(
(x, 0) ∼ p (x)∀x ∈ T 2

)
.

The orientation reversing curve representing b doesn’t lift. So N is orientable. Note that
∂N ∼= T 2. There is a strong deformation retraction N → X2, so π1 (N) ∼= K. Let N1, N2

be two copies of N . Write

(1.26) π1 (Ni) =
〈
ai, bi

∣∣ b−1
i aibi = a−1

i

〉
.

Notice that π1 (∂Ni) ∼= Z × Z =
〈
ai, b

2
i

〉
< π1 (Ni). Let ϕ : ∂N1 → ∂N2 be a homeomor-

phism. Let Mϕ = N1 ∪ϕ N2. This is a closed, orientable three-manifold. Therefore

(1.27) π1 (Mϕ) = π1 (N1) ∗Z×Z π1 (N2) ∼= K1 ∗Z×Z K2 .

Since K is torsion-free, π1 (Mϕ) is torsion-free. But in fact we have the following theorem.

Theorem 1.16. If H1 (Mϕ) is finite, then π1 (Mϕ) is not LO.

Remark 1.4. We will see later that for M a prime three-manifold with H1 (M) infinite
has π1 (M) LO.

Proof. ϕ is determined up to isotopy, so the resulting manifold Mϕ depends only on
ϕ∗ : H1 (∂N1)→ H1 (∂N2). We know

Z⊕ Z = Z 〈a1, 2b1〉 Z⊕ Z = Z 〈a2, 2b2〉(1.28)
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so ϕ∗ is given by some 2× 2 matrix with Z coefficients

(1.29)

[
p r
q s

]
with determinant ps− qr = ±1. Specifically we have:

ϕ∗ (a1) = pa2 + 2qb2(1.30)

ϕ∗ (2b1) = ra2 + 2sb2 .(1.31)

Now we have H1 (Ni) = Z⊕Z2 with basis bi and ai respectively. Then Hq (Mϕ) is presented
by

(1.32) A =


2 0 0 0
0 0 2 0
−1 0 p 2q
0 −2 r 2s

 .

where we order the basis as {a1, b1, a2, b2}. Interchanging columns 2 and 3 we get

(1.33) detA = 4

∣∣∣∣det

[
0 2q
−2 2s

]∣∣∣∣ = 16 |q| .

Therefore H1 (Mϕ) is finite iff q 6= 0 iff ϕ∗ (a1) 6= ±a2.
Suppose π1 (Mϕ) is LO. Then we would get an induced LO on the common boundary

∂N1 = ∂N2. But there are only 4 LO’s on π1 (Ni) (for i ∈ {1, 2}). By Corollary 1.15, for any
LO on π1 (N), 〈a〉 is the unique Z-summand of π1 (∂N) =

〈
a, b2

〉
such that if h ∈ 〈a〉 and

g ∈ π1 (∂N) \ {1}, g > 1, then g > h. Therefore ϕ∗ (a1) = ±a2 which is a contradiction. �

Lecture 3; January
28, 2020

Let < be an STO on a set X. Let B (X,<) be the group of <-preserving bijections
X → X.

Theorem 1.17. B (X,<) is always LO.

Proof. Let ≺ be a WO on X. Let f, g ∈ B (X,<) such that f 6= g. Write

(1.34) [f 6= g] = {x ∈ X | f (x) 6= g (x)} 6= ∅ .
Let x0 be the ≺-least element of [f 6= g]. Define

(1.35) f < g ⇐⇒ f (x0) < g (x0) .

Then we claim that this is an LO on B (X,<). Left-invariance is clear. To see this is a STO
we need “trichotomy” and transitivity. Trichotomy is easy, and transitivity follows from the
same argument as the proof of Theorem 1.4. �

Example 1.3. Let < be the standard order on R. Then B (R, <) consists of the
orientation-preserving homeomorphisms R→ R, written Homeo+ (R).

Corollary 1.18. Homeo+ (R) is LO.

Remark 1.5. For x ∈ R, let ≺x be a WO on R such that x is the ≺x-least element
of R. Let <x be the LO on Homeo+ (R) induced by ≺x, as in the proof of Theorem 1.17.
Given x 6= y ∈ R, there exists g ∈ Homeo+ (R) such that g (x) > x and g (y) < y. But this
means

g <x 1 g <y 1 .

which implies <x 6=<y. Therefore Homeo+ (R) has uncountably many LO’s.



2. THREE-MANIFOLD GROUPS 12

Remark 1.6. It is a fact that the number of LO’s on a group G is either finite (and of
the form 2n) or uncountable.

Corollary 1.19. A group G is LO iff G acts faithfully1.1 on a STO’d set (X,<).

Proof. (⇐=): This follows from Theorem 1.17.
( =⇒ ): G acts faithfully on (G,<) by left multiplication. �

Corollary 1.18 implies that any subgroup of Homeo+ (R) is LO. E.g. one can show that
F2 (the free group of rank 2) is a subgroup of Homeo+ (R). (This is another way to show
that countable free groups are LO.) In fact this characterizes countable LO groups.

Theorem 1.20. Let G be a countable group. Then G is LO iff there exists an injective
homomorphism G→ Homeo+ (R).

Proof. (⇐=): This follows from Corollary 1.18.
( =⇒ ): We actually prove something slightly stronger. This will follow from Theo-

rem 1.21. �

Theorem 1.21. Let (G,<) be a countable group with an LO. Then there exists a LO on
Homeo+ (R) and an order-preserving injective homomorphism (G,<)→ (Homeo+ (R) , <).

Sketch of proof. Let < be an LO on G. If G = {1} this is immediate, so assume
G 6= {1}. Therefore it is infinite, since LO groups are torsion free. Let g1, g2, . . . be some
enumeration of the elements of G.

Define an embedding e : G→ R by e (g1) = 0, and inductively by:

(i) If gn+1

{
>
<

}
gi for all 1 ≤ i ≤ n, then set

(1.36) e (gn+1) =

{
max {e (gi) | 1 ≤ i ≤ n}+ 1
min {e (gi) | 1 ≤ i ≤ n} − 1

}
.

(ii) Otherwise let

gl = max {gi | 1 ≤ i ≤ n, gi < gn+1}
gr = min {gi | 1 ≤ i ≤ n, gi > gn+1}

and set

e (gn+1) =
e (gl) + e (gr)

2
.

Remark 1.7. (1) e is order-preserving, i.e. a < b =⇒ e (a) < e (b).
(2) e (gn+1) ∈ Z iff (i) holds.
(3) If g > 1 then g2 > g and g−1 < g. If g < 1 then g2 < g and g−1 > g, which implies

Z ⊂ e (G) = Γ.
(4) G acts on Γ by g (e (a)) = e (ga). In fact, G acts on (Γ, <) (where < is the

restriction of < on R) since e (a) < e (b) iff a < b iff ga < gb iff e (ga) < e (gb) iff
g (e (a)) < g (e (b)).

To see that this action extends to an action of G on R, we have a few steps.

Step 1: The action of G on Γ is continuous,
Step 2: The action of G on Γ extends to a continuous action of G on Γ̄.

1.1Recall this means g (x) = x for all x ∈ X iff g = 1.
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Step 3: R\Γ̄ is a countable q of open intervals (ai, bi); the action of G is defined on {ai, bi};
and extends to [ai, bi].

Note, to ensure Step 1:, it is not enough to take e to be an order-preserving of G in R.
It must be continuous.

To define an LO on Homeo+ (R) that restricts to the LO on Γ from G, first pick any
γ ∈ Γ. Then g > 1 (resp. < 1) iff g (γ) > γ (resp. < γ). Let ≺ be a WO on R such that
γ is the ≺-least element of R. Then let l be the LO on Homeo+ (R) induced by ≺. Then
g > 1 (resp. < 1) in G iff g m 1 (resp. l) in Homeo+ (R). �

3. Group rings

Let R be a ring (with 1).

• a ∈ R is a unit if there exists b ∈ R such that ab = ba = 1.
• a ∈ R is a zero-divisor if a 6= 0 and there exists b 6= 0 such that either ab = 0 or
ba = 0.

• a ∈ R is a non-trivial idempotent if a2 = a but a 6= 0 and a 6= 1.

Let G be a group and R a ring. Then the R-group ring of G consists of formal sums:

(1.37) RG :=
{∑

rgg
∣∣∣ g ∈ G, rg ∈ R, rG 6= 0∀ but f’tly many g ∈ G

}
.

RG is a ring with respect to the obvious operations. For g ∈ G and r ∈ R a unit, then rg
is a unit in RG. A unit in RG is non-trivial if it is not of this form.

Remark 1.8. If X̃ → X is a universal covering, then π = π1 (X) acts on X̃ soH∗

(
X̃,Z

)
is a Zπ-module.

Theorem 1.22. Suppose G has non-trivial torsion, and K is a field of characteristic 0.

(1) KG has zero divisors,
(2) KG has non-trivial units,
(3) KG has non-trivial idempotents.

Proof. Let g ∈ G have order n ≥ 2. Define

σ = 1 + g + g2 + . . .+ gn−1 ∈ KG .

First notice that

(1.38) gσ = σ

which implies (1− g)σ = 0 so we have zero divisors.
(1.38) also gives us that σ2 = nσ. Therefore

(1− σ)

(
1− 1

n− 1
σ

)
= 1

so we have a nontrivial unit for n > 2. If n = 2, 1− σ = −g, but we still have:

(1.39) (1− 2σ)

(
1− 2

3
σ

)
= 1 .

Finally, we have that

(1.40)

(
1

n
σ

)2

=

(
1

n2

)
σ2 =

1

n
σ

so we have nontrivial idempotents. �
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Note that the proof of (1) works even for ZG.

Remark 1.9. If n 6∈ {2, 3, 4, 6} then ZG has nontrivial units. This is a theorem of
Higman.

Example 1.4. For n = 5,

(1.41)
(
1− g − g4

) (
1− g2 − g3

)
= 1 .

But what if G is torsion free? This brings us to the famous Kaplansky conjectures.

Conjecture 1 (Kaplansky). If G is torsion free and K is a field, then:

I (Units conjecture): KG has no non-trivial units,
II (Zero-divisors conjecture): KG has no zero divisors,

III (Idempotents conjecture): KG has no non-trivial idempotents.

Remark 1.10. Clearly II implies III since a2 = a implies a (a− 1) = 0, which by II
implies a = 0 or a = 1 which implies III. In fact they’re all equivalent, but this is nontrivial
to see.

Lecture 4; January
30, 2020

Remark 1.11. Note that if R is an integral domain (e.g. Z) then R is contained in its
field of fractions. In this case items I and II and item III for its field of fractions imply the
corresponding versions of items I and II and item III for R.

Remark 1.12. We know this is true for LO groups. As we have seen, we should think
of LO as being a stronger version of torsion free.

Theorem 1.23. If G is LO then KG satisfies items I and II and item III.

Proof. Since item I implies item III by the above remark we show item I and item II.
item I: Suppose

(1.42)

(
m∑
i=1

αigi

) n∑
j=1

βjhj

 = 1

with m, n not both 1, αi, βj 6= 0 ∈ K, distinct gi ∈ G, and distinct hi ∈ G. Note this
product can be rewritten as the following sum with mn terms:

(1.43)
∑
i,j

(αiβj) (gihj) .

Assume WLOG that h1 < h2 < . . . < hn. Let gkhl be a minimal element of

(1.44) S = {gihj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ⊂ G .

We know h1 < hj for j > 1, so gkh1 < gkhj for all j > 1. Therefore l = 1. Also gh1 = g′h1

which implies g = g′. Therefore gkh1 is the unique

(1.45) (k, 1) ∈ {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
such that gkh1 is a minimal element of S.

Similarly, there is a unique

(1.46) (r, n) ∈ {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}
such that grhn is a maximal element of S.

Claim 1.4. gkh1 6= grhn.
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If they were equal, then r = k, n = 1, so m > 1. So gkh1 = grh1, and therefore gr = gk.
But this cannot be the case since they are distinct by assumption.

This implies that (1.43) has ≥ 2 terms after cancellation, so it cannot be 1.
item II: Now suppose

(1.47)

(
m∑
i=1

αigi

) n∑
j=1

βjhj

 = 0

for m,n ≥ 1. Then there is a unique minimal element and nonzero coefficient, which means
it is nonzero. �

Conjecture 2 (Isomorphism conjecture). If G is torsion free, then ZG ∼= ZH implies
G ∼= H.

Remark 1.13. In [H] a finite counterexample to the conjecture for arbitrary groups
was provided, i.e. it is shown that there exists finite G, H such that ZG ∼= ZH, G 6∼= H.

Corollary 1.24 ([LR]). If G is LO, then G satisfies the isomorphism conjecture.

Proof. Theorem 1.23 implies that ZG has no nontrivial units. Call UZG the group of
units in ZG = Z/2×G. Suppose ZG ∼= ZH. Theorem 1.23 says that ZG has no 0-divisors.
This implies ZH has no 0-divisors, which means (by Theorem 1.22) that H is torsion-free.
Now H < UZH ∼= UZG ∼= Z/2 × G which implies H < G (since H is torsion-free), which
implies H is LO (since G is), which implies UZH ∼= Z/2×H, which implies Z/2×H ∼= Z/2×G
which implies H ∼= G (since H, G are torsion free). �

Remark 1.14. We might wonder if it is ever the case that (for G 6= 1) (G ∗ Z) / 〈〈w〉〉 =
1? This is known for G torsion free [K1].

Counterexample 1. If we consider the question of whether we can ever have (A ∗B) / 〈〈w〉〉 =
1 for A, B nontrivial, a counterexample is given by:

Z/2 ∗ Z/3/ (a = b) .

4. BO’s on Z× Z

Recall we have 2 orders on Z. Consider a line of slope α in Z × Z. Then we have two
cases.

(1) α irrational: The associated positive cone is everything above the line. Specifically,
P ⊂ Z× Z is given by

(1.48) P = {(m,n) |n > mα} .
It is easy to check that this is a positive cone. This means there are uncountable
many BO’s on Z× Z.

(2) α rational: Notice that now

(1.49) {(m,n) |n = mα} ∼= Z < Z× Z .

Now let P0 be one of the two positive cones on Z. Then we can check that

P = P0 q {(m,n) |n > mα}
is a positive cone for Z× Z.

Remark 1.15. (1) (Up to reversal) these are all the BOs on Z × Z. I.e. for α
rational we get two, and for α irrational we get 4.

(2) This generalizes in the obvious way to Zn.
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5. BO’s on R

Regard R as a vector space on Q with uncountable bases Λ. Recall Λ exists by the
axiom of choice. Therefore R ⊂ QΛ. In particular it is the elements of QΛ with only finitely
many non-zero coordinates. There are uncountable many WO’s on Λ, and each gives rise
to a lexicographic BO on QΛ. This gives us uncountably many BOs on R.



CHAPTER 2

The space of left-orders on a group

The basic idea is that since lefts orders are determined by positive cones, we can give
this space a topology. Consider a family of sets {Xλ |λ ∈ Λ}. Then write

X =
∏
λ∈Λ

Xλ

and πλ : X → Xλ for the projection. If Xλ is a topological space, then X can be given
the product topology. This is the largest topology on X such that πλ is continuous for all
λ ∈ Λ. So X has subbasis

(2.1)

π−1
λ (Uλ) = Uλ ×

∏
µ6=λXµ

∣∣∣∣∣∣Uλ ⊂ Xλ open, λ ∈ Λ

 .

Theorem. If Xλ is compact for all λ ∈ Λ then
∏
λ∈ΛXλ is compact.

Remark 2.1 (Exercises). (1) Xλ Hausdorff (for all λ ∈ Λ) implies
∏
λ∈ΛXλ is

Hausdorff.
(2) A space X is totally disconnected if the only nonempty connected subspaces are

singletons {x} for x ∈ X. This is equivalent to the connected components of X all
being {x}. Show that Xλ totally disconnected (for all λ ∈ Λ) implies

∏
λ∈ΛXλ is

totally disconnected.

Let X be a set, let S (X) be the set of subsets of X (i.e. the power set). Then we have
a correspondence:

S (X) ↔ {f : X → {0, 1}}

which sends:

A ⊂ X ↔ fA : X → {0, 1}
where

fA (x) =

{
1 x ∈ A
0 x 6∈ A

.

Give {0, 1} the discrete topology, and give

S (X) = {0, 1}X = 2X =
∏
x∈X
{0, 1}

the product topology. Note {0, 1} is a compact, Hausdorff, totally-disconnected space, which
means S (X) is too. For x ∈ X let

Ux = π−1
x (1) = {A ⊂ X |x ∈ A}

Vx = π−1
x (0) = {A ⊂ X |x 6∈ A} .

17
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Note that Vx = S (X) \ Ux so Ux and Vx are open and closed. Then

(2.2) {Ux |x ∈ X} ∪ {Vx |x ∈ X}

is a subbasis for S (X).
Lecture 5; February
4, 2020

Lemma 2.1. Suppose B ⊂ X. Then

{A ⊂ X |B 6⊂ A} {A ⊂ X |A ∩B 6= ∅}

are open subsets of S (X).

Proof.

{A ⊂ X |B 6⊂ A} =
⋃
b∈B

{A ⊂ X | b 6∈ A} =
⋃
b∈B

Vb

so it is open. The argument for the other set is similar. �

If G is a group, let

(2.3) LO (G) = {positive cones ⊂ G} ⊂ S (G)

and equip it with the subspace topology. We call this the space of left-orders on G.

Example 2.1. LO (Z) = ptq pt. LO (Z× Z) is the cantor set.

Theorem 2.2. LO (G) is closed in S (G) and hence compact.

Proof. We show S (G) \ LO (G) is open. Suppose A ∈ S (G) \ LO (G), i.e. A ⊂ G is
not a positive cone. So either:

(i) ∃g, h ∈ A such that gh 6∈ A or
(ii) ∃g ∈ G such that g, g−1 ∈ A or

(iii) 1 ∈ A or
(iv) ∃g, g 6= 1 such that g 6∈ A and g−1 6∈ A.

Now the point is that these are open conditions since we can write them in terms of the
Ux’s and Vx’s. In particular:

(i) ⇐⇒ A ∈ Ug ∩ Uh ∩ Vgh (ii) ⇐⇒ A ∈ Ug ∩ Ug−1

(iii) ⇐⇒ A ∈ U1 (iv) ⇐⇒ A ∈
⋃
g 6=1

(
Vg ∩ Vg−1

)
.

Therefore LO (G) is compact, Hausdorff, and totally disconnected. �

Similarly one can define the space of biorders on G, BO (G), to be the set of conjugation
invariant positive cones in G.

Exercise 2.1. Show that BO (G) is closed inside of LO (G).

Therefore BO (G) is compact, Hausdorff, and totally disconnected.
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1. The cantor set

The cantor set C ⊂ I ⊂ R is defined as follows. First write

C1 = [0, 1/3] ∪ [2/3, 1]

C2 = ([0, 1/9] ∪ [2/9, 1/3]) ∪ ([2/3, 7/9] ∪ [8/9, 1])

. . .

then define

(2.4) C =

∞⋂
n=1

Cn .

The idea is that we keep removing the middle thirds.
C is uncountable, totally-disconnected, closed in I. Therefore it is also compact and

Hausdorff. This is a very surprising example. We can easily write down something un-
countable and totally-disconnected, such as the irrationals, but they do not form a compact
set.

Any x ∈ I has a ternary expansion:

x = 0. x1x2 . . . =

∞∑
n=1

xn
3n

which is unique up to:
. . . xk22 . . . = . . . (xk+1) 00 . . . .

Now notice

x1 = 1 ⇐⇒ x ∈ (1/3, 2/3)

with the convention that
1

3
= 0.022 . . . .

Similarly (with the same convention) we have

x1 6= 1, x2 = 1 ⇐⇒ x ∈ (1/9, 2/9) ∪ (7/9, 8/9)

and so on. Then

(2.5) C = {x ∈ I |x = 0. x1x2 . . . | ∀n, xn = 0 or 2} .

Now give {0, 2}N the product topology.

Exercise 2.2. Show that the map sending

(2.6) 0.x1x2 . . . 7→ (x1, x2, . . .)

defines a homeomorphism

(2.7) C
∼=−→ {0, 2}N .

Now recall that LO (G) is compact in {0, 1}G, so if G is countable, then LO (G) is
homeomorphic to a subspace of C.

We say x ∈ X is isolated if {x} is open. We say X is perfect if it has no isolated points.
As it turns out, the Cantor set is perfect.

Theorem. If X is a compact, totally-disconnected, and perfect metric space, then X ∼=
C.

Therefore, if G is countable, LO (G) 6= ∅, and has no isolated points, then LO (G) ∼= C.
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Example 2.2. In 2004 [S2] it was shown that if n > 1 then LO (Zn) = BO (Zn) ∼= C.

Example 2.3. In 1985 [M2] it was shown that LO (Fn) ∼= C. It is unknown if LO (Fn)
has isolated points.

Remark 2.2. As it turns out, the braid group is LO. The first proof of this fact was
not topological, so topologists started to think of a topological proof. When someone asked
Thurston, he said “of course the braid group is left-orderable!”

If X ⊂ G, let S (X) be the semigroup generated by X in G. This is the same as the
non-empty product of elements in X. There is a characterization of left orderability in terms
of finite subsets of G.

Theorem 2.3. G is LO iff for all finite F ⊂ G \ {1}, there exists ε : F → {±1} such
that

(2.8) 1 6∈ S
({
f ε(f)

∣∣∣ f ∈ F}) (= S (F, ε)) .

Remark 2.3. It follows from this that, given a solution to the word problem in G, there
exists a machine such that if G is not LO, the machine will eventually tell you that. Nathan
Dunfield has an explicit algorithm for three-manifold groups.

Remark 2.4. If we take the n-fold cyclic branch cover of the knot 52, then we can
consider π1 (Σn (52)). For n = 2, this is a lens space so π1 is finite. It is also not LO for
n = 3, 4, and 5. But it is unknown for n = 6, 7, and 8. (If the L-space conjecture is true,2.1

then it should be LO for these values of n.) For n ≥ 9 it is known to be LO.

Proof. ( =⇒ ): Define

ε (f) =

{
+1 f > 1

−1 f < 1
.

(⇐=): Let F ⊂ G \ {1} be finite, ε : F → {±1}. Define

Q (F, ε) :=
{
Q ⊂ G \ {1}

∣∣∣S (F, ε) ⊂ Q,S (F, ε)
−1 ∩Q = ∅

}
.

Note that Q (F, ε) 6= ∅ iff (2.8) holds. Let

Q (F ) = ∪εQ (F, ε) .

Note this is a finite union.

Claim 2.1. Q (F ) is closed in S (G).

Proof. It is sufficient to show that Q (F, ε) is closed, i.e. S (G) \ Q (F, ε) is open.

Suppose A ⊂ G, A 6∈ Q (F, ε) i.e. either 1 ∈ A, or S (F, ε) 6⊂ A, or S (F, ε)
−1 ∩A 6= ∅. These

conditions are all open by Lemma 2.1. �

Note that if F ⊂ F ′, then

(2.9) S (F, ε′|F ′) ⊂ S (F ′, ε′)

and therefore

(2.10) Q (F ′) ⊂ Q (F ) .

2.1Which is looking quite likely. It has been checked for something like three-hundred thousand

manifolds.
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Let F1, F2, . . . , Fn be finite subsets of G \ {1}. Then
n⋂
i=1

Q (Fi) ⊃ Q (F1 ∪ F2 ∪ . . . ∪ Fn) 6= ∅

since (2.8) holds. This means {Q (F )} has the finite intersection property (FIP) and each
one is closed. Therefore, since S (G) is compact,⋂

F⊂G\{1} finite

Q (F ) 6= ∅ .

So let P ∈
⋂
Q (F ).

Claim 2.2. P is a positive cone for G.

Lecture 6; February
6, 2020

Proof. First notice 1 6∈ P since 1 6∈ Q (F ) for any finite F ⊂ G \ {1}.
Now we show g, h ∈ P implies gh ∈ P . Let F = {g, h}. Then there are ε (g) , ε (h) ∈

{±1} such that

S
(
gε(g), hε(h)

)
⊂ P S

(
gε(g), hε(h)

)−1

∩ P = ∅ .

Therefore ε (g) = ε (h) = +1, which implies gh ∈ S
(
gε(g), hε(h)

)
⊂ P .

Now we show P ∩ P−1 = ∅. Let g ∈ P , and F = {g}. Therefore S (g) ⊂ P , which

means S (g)
−1 ∩ P = ∅, so g−1 6∈ P .

Finally we show P q P−1G \ {1}. Take g ∈ G such that g 6= 1. Let F = {g}. Then
there exists ε = ±1 such that S (gε) ⊂ P (and S

(
g−1

)
∩ P = ∅) which implies gε ∈ P . �

�

Remark 2.5. There exists an analogue of this for BO.

Theorem 2.4. G is BO if and only if for all finite F ⊂ G \ {1} there is some ε : F →
{±1} such that 1 6∈ T (F, ε) where T (F, ε) is the smallest semigroup which

(i) contains S (F, ε), and
(ii) for all g, h ∈ T (F, ε), g, h, g−1, g−1hg ∈ T (F, ε).

Exercise 2.3. Prove Theorem 2.4.

Let P be a property of groups. A group G is locally P if and only if every finitely
generated subgroup of G has property P . (So loc (loc (P )) ≡ loc (P ).) P is a local property
if loc (P ) =⇒ P .

Theorem 2.5. G is locally LO (resp. BO) if and only if G is LO (resp. BO).

Proof. (⇐=): LO and BO are inherited by subgroups.
( =⇒ ): Let G be a finite set contained in G\{1}. Then 〈F 〉 < G is finitely generated. G

loc (LO) implies 〈F 〉 is LO. Therefore there exists ε such that (2.8) holds (from Theorem 2.3).
This is true for all F , so G is LO by Theorem 2.3. The argument for BO is similar, using
Theorem 2.4 instead. �

Corollary 2.6. An abelian group is BO iff it is torsion free.

Proof. ( =⇒ ): This follows from Lemma 1.3.
(⇐=) G is LO iff G is loc (LO). For H finitely generated inside of torsion free G, then

H ∼= Zn, so it is LO. �
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Corollary 2.7. An arbitrary free group is LO.

Proof. Let F be a free group. For H a finitely generated subgroup of F , H ∼= Fn for
some n. Then H is LO by Corollary 2.7, so F is LO by Theorem 2.5. �

Theorem 2.8. Let {Gλ}λ∈Λ be a collection of groups. Then Gλ is LO for all λ ∈ Λ if
and only if ∗λ∈ΛGλ is LO.

Proof. (⇐=): Gλ < ∗λ∈ΛGλ.
( =⇒ ): There exists a homomorphism

G = ∗λ∈ΛGλ
∏
λ∈ΛGλ

gλ (1, . . . , 1, gλ, 1, . . .)

ϕ

.

So we get a SES

(2.11) 1 H ∗ΛGλ
∏

ΛGλ 1
ϕ

where H = kerϕ. By the Kurosh subgroup theorem

H =

(
∗
µ
Hµ

)
∗ F

whereHµ is a subgroup of a conjugate ofGλµ inG, and F is a free group. ButH = kerϕ, and

ϕ|Gλ is injective for all λ ∈ Λ. Therefore for all λ ∈ Λ and g ∈ G we have H∩g−1Gλg = {1}.
Therefore H = F .

But now Gλ LO for all λ ∈ Λ implies
∏
λ∈ΛGλ is LO by Theorem 1.4, and F = H is

LL by Corollary 2.7, so G is LO by Theorem 1.13. �

Let P be a property of groups. A group G is residually P , res (P ), if and only if for
all g ∈ G \ {1} there exists an epimorphism ϕ : G → H such that H has property P , and
ϕ (g) 6= 1.

Remark 2.6. Note that P implies res (P ), and res (res (P )) implies res (P ).

We say P is a residual property if and only if res (P ) implies P .

Example 2.4. Finiteness is not a residual property. E.g. Z is res (finite).

Lemma 2.9. If P is closed under taking subgroups and direct products, then P is a residual
property.

Corollary 2.10. LO and BO are residual properties.

Proof of Lemma 2.9. Suppose G is res (P ). Then for all g ∈ G \ {1} there is an
epimorphism ϕg : G → Hg such that Hg has P , and ϕg (g) 6= 1. The collection of these
{ϕg | g ∈ G \ {1}} induces a homomorphism

ϕ : G→
∏

g∈G\{1}

Hg .

Then this is injective, and ϕg (g) 6= 1. Hg has P for all g ∈ G \ {1}. Therefore
∏
g∈G\{1}Hg

has P . But
G ∼= ϕ (G) <

∏
g∈G\{1}

Hg

so G has P . �
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Remark 2.7. Residual properties are related to areas of active research. For example
the geometrization conjecture is related to residual finiteness of 3-manifolds.

Remark 2.8. Let G be a group. Let FQ (G) consist of the finite quotients of G. Then
the following is an open question. Let F2 be a free group of rank 2. If G is a residually
finite group such that FQ (G) = FQ (F2) is G ∼= F2? Note that FQ (F2) consists of the finite
groups generated by two elements. So this is really quite concrete.

Another open question is if G1 and G2 are residually finitely presented, then does
FQ (G1) = FQ (G2) imply G1

∼= G2?

Example 2.5. LO (Zn) and LO (Fn) are both the cantor set.

Example 2.6. Let Bn denote the braid group. As it turns out LO (Bn) has isolated
points [DD].

The following is a strengthening of the fact that LO is a local property.

Warning 2.1. At this point it is convenient to make the convention that {1} is not
LO.

Theorem 2.11 (Burns-Hale). G is LO iff every non-trivial finitely generated subgroup
H < G has an LO quotient.

Proof. ( =⇒ ): G is LO implies H is LO.
(⇐=): F = {g1, . . . , gn} ⊂ G \ {1} for n ≥ 1. We show by induction on n that

the condition on F in Theorem 2.3 holds. Let n = 1. Then 〈g1〉 has an LO quotient
by assumption. Therefore g1 has infinite order, so 1 6∈ S (g1). Now suppose n > 1. By
assumption, there exists a nontrivial homomorphism ϕ : 〈g1, . . . , gn〉 → L where L is LO.
For some m there exists

ϕ (gi) =

{
+1 1 ≤ i ≤ m
−1 m < i ≤ n

By the induction hypothesis there exists ε1, . . . , εm ∈ {±1} such that 1 6∈ S ({gεii | 1 ≤ i ≤ m}).
Let < be an LO on L. Define εi ∈ {±1} (m < i ≤ n) so that

(2.12) ϕ (gεii ) > 1

Then 1 6∈ S ({gεii | 1 ≤ i ≤ n}). �

A group G is indicable if either G = {1} or there is an epimorphism G→ Z.

Corollary 2.12. G is locally indicable implies G is LO.

Remark 2.9. Free groups are loc (indicable) so this gives another proof that free groups
are LO.

Remark 2.10. Note that G having an LO quotient does not imply G is LO.

Counterexample 2. Z ∗ Z/2 has LO quotient, but is not LO.

We do however have:

Theorem 2.13. Let G be a group such that every finitely generated subgroup of infinite
index is indicable. Then G is LO if and only if G has an LO quotient.

Lecture 7; February
11, 2020

Proof. ( =⇒ ): This direction is immediate.
(⇐=): Apply Theorem 2.11. Let H < G, H 6= {1}, finitely generated.
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Case 1: [G : H] =∞. By hypothesis, H is indicable, so therefore (since H is nontrivial) G
has quotient Z.

Case 2: [G : H] finite. By hypothesis there exists an epimorphism ϕ : G → Q where Q
is LO. Therefore Q is infinite, so ϕ (H) 6= {1}, (since [Q : ϕ (H)] is finite) and
therefore H has LO quotient ϕ (H).

�

Remark 2.11. It turns out that G BO implies G is locally indicable.

Remark 2.12. We will eventually apply Theorem 2.13 to three-manifold groups. But
first we look at surfaces.

2. Surface groups

An n-manifold is a second-countable Hausdorff space M such that for all x ∈M x has
a neighborhood U such that either

(U, x) ∼= (Rn, 0) or (U, x) ∼=
(
Rn+, 0

)
.

Define the interior and boundary as:

int (M) = {x ∈M |x has a neighborhood of the first type}
∂M = {x ∈M |x has a neighborhood of the second type} .

Note that (int (M))∩∂M = ∅. Also note that int (M) is an n-manifold with empty boundary,
and ∂M is an (n− 1)-manifold with empty boundary. M is closed if M is compact and
∂M = ∅.

A triangulation of M is a homeomorphism M ∼= |K|, where K is a locally finite simplicial
complex. Whether or not a manifold has a triangulation is a subtle question which wasn’t
settled until recently [M1].

Fact 2. Every n-manifold has a triangulation for n ≤ 3.

This was shown for n = 2 in [R1] and for n = 3 in [M6].
For us, a surface is a 2-manifold. There is the well-known classification of closed surfaces.

In particular, they all either look like S2, T 2, a connect sum of copies of T 2, the projective
plane P2, or connect sums of copies of P2.

There is also a classification of non-compact surfaces.

Example 2.7. Consider the plane. Now attach handles as in fig. 1. This is an infinite
genus non-compact surface. Now consider the infinite genus surface in fig. 2. Are these
homeomorphic? See remark 2.13 for the answer.

Now we consider the following question.

Question 1. Which surface groups π1 (S) are LO?

We want to use Theorem 2.11, so we will consider finitely generated subgroups of surface
groups. First, recall the following.

Lemma 2.14. If M is a closed n-manifold, N is a connected n-manifold, and f : M → N
is an injective map, then f is a homeomorphism.

This uses the Jordan-Brouwer theorem for Sn−1s in Sn. For M compact, N Hausdorff,
it is enough to show f is onto.

Lemma 2.15. Let S be a non-compact surface. Then H2 (S) = 0.
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. . .. . .

Figure 1. The Loch-Ness monster surface obtained by attached infinitely
many handles to the plane.

Figure 2. The Jacob’s ladder surface.

Proof. Triangulate S. Then we can get compact surfaces S1 ⊂ S2 . . . ⊂ S such that

S =

n⋃
i=1

Si .

∂Si 6= ∅ by Lemma 2.14, so Si ' some 1-complex. Therefore H2 (Si) = 0, for all i. And
every 2-cycle in S is contained in some Si. Therefore H2 (S) = 0. �

Lemma 2.16. Let S be a surface, δ a circle component of ∂S such that π1 (δ)→ π1 (S) is
not injective. Then S ∼= D2.

Proof. For S compact, this is true by the classification. So let S be non-compact. Let
S∗ = S ∪D2 glued along δ. Then we have that the following commutes

π1 (δ) π1 (S)

H1 (δ) H1 (S)

∼= .

But now since π1 (δ) → π1 (S) is not injective, H1 (δ) → H1 (S) cannot be injective either.
So now applying Mayer-Vietoris, we get

(2.13) H2 (S∗) ∼= ker (H1 (δ)→ H1 (S)) ,

so by definition this is nonzero. But S∗ is noncompact, so this contradicts Lemma 2.15. �

Remark 2.13. Have you answered the question from example 2.7 yet? The answer has
to do with the number of ends, which is defined as follows. Remove compact subsets and
count the remaining components. If we minimize the number of components, then this is
the number of ends. This is clearly a topological invariant. The loch-ness monster has 1,
and Jacob’s ladder has 2.
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We can also define the notion of the number of ends of a group. As it turns out, e (G) = 0
iff G is finite. Then, for example, we have

e (Z) = 2

e (Zn) = 1 (n ≥ 2)

e (Fn) =∞ .

Then it turns out that for all G, e (G) = 0, 1, 2, or ∞.

Theorem 2.17 (Compact core theorem for surfaces). Let S be a connected surface

with π1 (S) finitely generated. Then there exists a compact connected S0
i
↪−→ S such that

i∗ : π1 (S0)→ π1 (S) is an isomorphism. We call S0 a compact core of S.

Proof. Triangulate S. Let γ1, . . . , γn be simplicial loops in S such that {[γ1] , . . . , [γn]}
are generators of π1 (S). Let N be a regular neighborhood of

⋃n
i=1 γi in S. N is a compact

surface with ∂N 6= ∅ (and we can in fact assume it is connected) and π1 (N) → π1 (S) is
onto.

Let S0 be N union with any disk components of S cut along ∂N . S0 is a compact
surface, and π1 (S0)→ π1 (S) is onto. If ∂S0 = ∅ then we are done since S0 = S.

So suppose ∂S0 6= ∅. Let δ be a component of ∂S0. Since π1 (S0) → π1 (S) is onto, δ
separates S. (If not, there exists a loop γ ⊂ S such that γ t δ is a single point. Therefore
γ cannot be in S0 but π1 (S0)→ π1 (S) is onto.)

Let S1 be the component of S cut along δ such that S0 6⊂ S1. By definition of S0 S1

is not a disk. Therefore by Lemma 2.16 π1 (δ) → π1 (S1) is one-to-one. If S0 is a disk,
then π1 (S) = {1} and we are done. So assume S0 is not a disk. Then π1 (δ) → π1 (S0) is
injective. So do this for all the boundary components δ of S0. Then we see by Van-Kampen
that this is just a big free product:

π1 (S) ∼= colim

 π1 (S1) π1 (S2) π1 (S3) . . . π1 (Sk)

π1 (S0)


but by definition this means π1 (S0)→ π1 (S) is injective. �

Lecture 8; February
14, 2020

Remark 2.14. There is an analogue of this theorem for three-manifolds as well. This
is related to the the Whitehead manifold, which is a contractible three-manifold not homeo-
morphic to R3. Whitehead invented this as a counterexample to his own theorem. Professor
Cameron says this tells us it is okay to make mistakes as long as you’re the one to find the
counterexample.

Remark 2.15. Now Theorem 2.11 implies that if G is locally indicable (and nontrivial)
then G is LO.

Theorem 2.18. Let S be a surface not homeomorphic to RP2. Then π1 (S) is locally
indicable.

Proof. Let H < π1 (S), H finitely generated and nontrivial. Then we want to show

it maps to Z. The point is that there exists a connected covering space S̃ → S such

that π1

(
S̃
)
∼= H. By Theorem 2.17, H ∼= π1 (S0) for S0 a compact surface. Of course

π1 (S0) 6= {1} (since H was).
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Now we claim S0 6∼= RP2. If it was, then S̃ ∼= RP2, so S ∼= RP2, which is a contradiction.
Not by the classification of compact surfaces, there exists an epimorphism H1 (S0) � Z,
so we can just pre-compose with the map π1 (S0) � H1 (S0), so we get an epimorphism
H � Z. �

Corollary 2.19. Let S be a surface. Then π1 (S) is LO if and only if π1 (S) 6= {1} and
S 6∼= RP2.

Remark 2.16. (1) If S is the Klein bottle then π1 (S) is locally indicable. But
π1 (S) is not BO (there exists a ∈ π1 (S) such that a is conjugate to a−1). This
shows:
(a) locally indicable and nontrivial does not imply BO, and
(b) there is no analog of Burns Hale for BO.

(2) Locally indicable (and nontrivial) implies LO, but the converse is false. We will
see that there are three manifolds M with H1 (M) finite2.2 and π1 (M) LO.

(3) It can be shown that if S is a non-compact surface, then π1 (S) is free. For example,
R\ a cantor set has π1 isomorphic to a free group on a countably infinite number
of generators.

(4) It can be shown that π1 (S) = 1 if and only if S ∼= S2 or D2 \ X for X a closed
subgroup of S1.

Remark 2.17. Colin Adams is a knot theorist who gives lectures in different personas.
E.g. a sleazy real-estate agent selling property in hyperbolic space. Once he attended a
class posing as a student. He started heckling the lecturer, and eventually the lecturer said
“well if you know so much, you come teach the class!” so he did. Some of the students were
responding to his heckling, saying “shut up man, he’s doing a great job!” so they were in
for surprise when he revealed who he is.

2.2So in particular π1 (M) is not locally indicable.



CHAPTER 3

Three-manifolds

Our three-manifolds will always be connected, orientable. They may have boundary
and may be non-compact. We will always be working in the PL or smooth category.

Let M1 and M2 be oriented 3-manifolds with balls Bi ⊂ int (Mi), Bi ∼= B3 for i = 1, 2.
The connect sum of M1 and M2 is the oriented manifold

M1#M2 = (M1 \ int (B1)) ∪h (M2 \ int (B2))

for h : ∂B1 → ∂B2 an orientation-reversing homeomorphism. It turns out that M1#M2 is
well-defined (up to orientation-preserving homeomorphism). The operation # is associative,
and commutative. Note that M#S3 ∼= M for all M . Also note that

π1 (M1#M2) ∼= π1 (M1) ∗ π1 (M2) .

We say M is prime if M ∼= M1#M2 implies M1 or M2
∼= S3.

Theorem (Kneser[K2],Milnor[M3]). Let M be a compact, oriented 3-manifold. Then

M ∼= #n
i=1Mi

(orientation preserving (op)) where Mi is prime (and not ∼= S3) for 1 ≤ i ≤ n. Moreover
the Mi are unique up to order and orientation-preserving homeomorphism.

Note S3 corresponds to n = 0.

Remark 3.1. In the same paper [K2] Kneser proved some other things which relied on
Dehn’s lemma. So he was looking closer at Dehn’s proof, and found some holes. He wrote
to Dehn who was on vacation to find out that he agreed there was something fishy. Thus
ensued a great correspondence between the two trying to fix it. It was eventually fixed in
[P1].

For M compact, and

M ∼= #n
i=1Mi

where the Mi are prime, we have

π1 (M) ∼=
n∗
i=1

π1 (Mi) .

So π1 (M) is LO iff π1 (Mi) is LO (for 1 ≤ i ≤ n). This is also true for BO.

Exercise 3.1. Show π1 (M) is locally indicable iff π1 (Mi) is locally indicable for all
1 ≤ i ≤ n. [Hint: USe the Kurosh subgroup theorem.]

The upshot is that for M compact, to answer LO, BO, or locally indicable, we may
assume M is prime.

Remark 3.2. There are noncompact three manifolds that cannot be expressed as # of
prime manifolds.

28
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M is irreducible if every S2 ⊂M bounds a B3 ⊂M .

Fact 3. M is irreducible iff M is prime and not homeomorphic (op) to S1 × S2.

The point being that S1 × S2 is prime.

Theorem (Perelman[P2,P4,P3]). Let M be a closed 3-manifold with universal cover

M̃ .

(1) If π1 (M) is finite, then M̃ ∼= S3 and the action of π1 (M) on S3 is as a subgroup
of SO (4).

(2) If π1 (M) is infinite and M is irreducible, then M̃ ∼= R3.

Corollary (Poincaré conjecture). If M is closed and π1 (M) = 1, M ∼= S3.

Remark 3.3. We know π1 (M) infinite implies M̃ is noncompact. Then M irreducible

implies π2 (M) = 0 (as we will see soon) so by standard stuff, M̃ is contractible. But, there
are contractible non-compact 3-manifolds without boundary which are not homeomorphic
to R3.

The 3-manifolds with π1 finite can be completely described. They’re all Seifert fiber
spaces.

Example 3.1. Let p, q ∈ Z such that p ≥ 2 (p, q) = 1. Recall we have a Z/p action on
C2 by

(z, w) 7→
(
e2πi/pz, e2πqi/pw

)
Now the restriction of this action to S3 is free, so we can quotient by it to get the lens space
L (p, q). Then

π1 (L (p, q)) = Z/p .
Nonetheless, Alexander showed that L (5, 1) 6∼= L (5, 2).

Theorem (Redemeister). L (p, q) is homeomorphic to L (p, q′) iff either q ∼= q′ (mod o)
or qq′ ∼= 1 (mod p).

The ⇐= direction is easy.

Theorem (Perelman[P2, P4, P3]). For M and M ′ closed three-manifolds, M prime
and not a lens space, then π1 (M) ∼= π1 (M ′) implies M ′ ∼= M .

So “prime three-manifolds are pretty much determined by their fundamental group”.

Remark 3.4. The restriction to prime is necessary here. Let M be an oriented three-
manifold such that M is not homeomorphic (op) to −M . For example, M = L (3, 1) or the
Poincaré homology sphere.

Then π1 (M#M) ∼= π1 (M# (−M)), but by prime decomposition, M#M 6∼= M# (−M).

Lecture 11;
February 25, 2020

1. Higher homotopy groups

We will give a basic overview of higher homotopy groups. Define

(3.1) πn (X,x0) =
{

homotopy classes of maps (Sn, s0)
f−→ (X,x0)

}
.

As it turns out, we can define a composition on this set with respect to which this becomes
a group. This is called the nth homotopy group of (X,x0). As soon as n ≥ 2, this group
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is abelian. Note that for f : (X,x0) → (Y, y0), we get an induced homomorphism f∗ :
πn (X,x0) → πn (Y, y0). I.e. the πn are covariant functors. If X is path-connected, this
implies that for all x0, x1 ∈ X,

(3.2) πn (X,x0) ∼= πn (X,x1) .

Let f : Sn → X. This induces a homomorphism

(3.3) f∗ : Hn (Sn)︸ ︷︷ ︸
∼=Z

→ Hn (X) .

Now f ' g implies f∗ = g∗, so we can define

(3.4) h : πn (X)→ πn (X)

by sending h ([f ]) = f∗ (1). This is well-defined, and it can be shown that this is in fact
a homomorphism. This is called the Hurewicz homomorphism. For n = 1, h is just the
abelianization.

Any covering projection p :
(
X̃, x̃0

)
→ (X,x0) induces an isomorphism p∗ : πn

(
X̃, x̃0

)
→

πn (X,x0) for n ≥ 2. This follows from the fact that π1 (Sn) = 1 if n ≥ 2, and the lifting
criterion.

2. Back to three-manifolds

LetM be a connected, orientable (sometimes oriented) 3-manifold, possible non-compact
and possible with boundary. Let S ⊂ M be an embedded 2-sphere. We say S is essential,
if S 6' pt. I.e. the homotopy class [S] 6= 0 ∈ π2 (M). We say S is incompressible if S does
not bound a 3-ball in M . Recall a manifold M is irreducible if and only if every 2-sphere
bounds a ball, i.e. every 2-sphere is compressible.

Theorem (Sphere theorem [P1], [W1]). Let M be a 3-manifold with π2 (M) 6= 0. Then
there exists an embedded essential 2-sphere in M .

This implies the asphericity of knots: if K is a knot in S3, then π2

(
S3 \K

)
= 0. The

proof uses the “tower construction”.

Theorem 3.1. Let M be a three-manifold and S a 2-sphere in M . Then S is incom-
pressible if and only if S is essential.

Proof. (⇐=): If S bounds a B3 ⊂M then S ' pt.
( =⇒ ): Let S be incompressible. Suppose (for a contradiction) that S ' pt, i.e.

[S] = 0 ∈ π2 (M), so [S] = 0 ∈ H2 (M) (after applying h from above). Therefore S
separates M . [Recall for S non-separating, then there is a loop γ ⊂ M such that γ meets
S transversely in 1 point, so [S] 6= 0 ∈ H2 (M).] So this separates M into M1 and M2. So
M = M1 ∪S M2. Now [S] = 0 ∈ H2 (M) implies S bounds a 3-chain in M . Therefore M1

(say) is compact and ∂M1 = S.
If π1 (M1) = 1, then M1

∼= B3 (by the Poincaré conjecture). Therefore S is compressible,
which is a contradiction. So π1 (M) ∼= π1 (M1) ∗ π1 (M2).

Case (1) π1 (M2) 6= 1: Let M̃ be the universal covering of M . Then π1 (M1) 6= 1, so M̃1

has more than one boundary component. Let S̃ ⊂ M̃ be a lift of S. Then every
component of M̃ cut along S̃ is non-compact. Therefore S̃ does not bound a (finite)

3-chain in M̃ , so
[
S̃
]
6= 0 ∈ H2

(
M̃
)

so
[
S̃
]
6= 0 ∈ π2

(
M̃
)

. Therefore

(3.5) [S] = p∗

([
S̃
])
6= 0 ∈ π2 (M) .
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Case (2) π1 (M2) = 1: Then M̃ is M̃1 with some copies of noncompact M2 attached. By
hypothesis S is incompressible so M2 6∼= B3. Therefore π1 (M2) = 1, so either M2 is

noncompact or ∂M2 \S 6= ∅. Now pick some lift S̃. It cannot bound a finite chain
in either direction since both either have nontrivial boundary, or are noncompact.

So as before,
[
S̃
]
6= 0 ∈ H2

(
M̃
)

, so nonzero in π1

(
M̃
)

, so [S] 6= 0 ∈ π1 (M).

�

Corollary 3.2. If M is a 3-manifold, then M is irreducible if and only if π2 (M) = 0.

Proof. Combine Theorem 3.1 with the sphere theorem. �

Corollary 3.3. For M̃ →M a covering, M is irreducible iff M̃ is irreducible.

Proof. This follows form Theorem 3.1 since π2

(
M̃
)
∼= π2 (M). �

Remark 3.5. This falls out for nothing by Theorem 3.1, but we did use the Poincaré
conjecture in our proof. This was actually known before the Poincaré conjecture. The
converse is easy, but the forward implication is hard.

Theorem. Let M be a three-manifold with π1 (M) finitely generated. Then there exists

a compact three-manifold N
i
↪−→M such that i∗ : π1 (N)→ π1 (M) is an isomorphism.

Recall a group G is coherent if H < G finitely generated implies it is finitely presentable.

Corollary. For M a three-manifold, π1 (M) is coherent.

Proof. For H a finitely generated subgroup of π1 (M), H ∼= π1

(
M̃
)

for M̃ → M a

covering. Then apply the Scott core theorem to M̃ . �

Remark 3.6. SL2 (Z) is virtually free. (It has a free subgroup of finite index.)

Free groups are coherent, so SL (2,Z) is coherent. We know SLn (Z) is incoherent for
n ≥ 4.

Question 2 (Serre). Is SL3 (Z) coherent?

Remark 3.7. Once at a conference in the UK, Professor Gordon was playing table
tennis. He asked a guy standing nearby if he wanted to play, and the guy beat him. He
asked for his name and he replied “Jean-Pierre Serre”.

Lemma 3.4. Let M be a closed orientable n-manifold, n odd. Then χ (M) = 0.

Proof. Let F be a field. By Poincaré duality,

(3.6) Hi (M ;F) ∼= Hn−i (M ;F) ∼= Hn−i (M ;F)

where the second equality follows from the universal coefficient theorem. Therefore

(3.7) χ (F ) =

n∑
i=0

(−1)
i
dimHi (M ;F) = 0

if n is odd. �

Lemma 3.5. Let M be a compact three-manifold and F a field. Then

dimH1 (M ;F) ≥ 1

2
dimH1 (∂M ;F) .
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Proof. Let 2M be the double of M . This is the union of M with M (i.e. M with the
opposite orientation) glued along the boundary. Let n be the number of ∂-components of
M . Then by Lemma 3.4,

(3.8) 0 = χ (2M) = 2χ (M)− χ (∂M)

which means χ (M) = χ (∂M) /2.
We will use the Betti number notation:

(3.9) β2 (M) = dimHi (M ;F) .

Then

(3.10) χ (M) = 1− β1 (M) + β2 (M)

Then

(3.11) χ (∂M) = n− β1 (∂M) + n .

Now by the universal coefficient theorem and Poincaré-Lefschetz duality we get

(3.12) H2 (M ;F) ∼= H2 (M ;F) ∼= H1 (M,∂M ;F) .

So now we have the exact sequence of the pair (M,∂M):

(3.13) . . . H1 (M,∂M ;F) H0 (∂M ;F)︸ ︷︷ ︸
Fn

H0 (M ;F)︸ ︷︷ ︸
F

0

which means

(3.14) β2 (M) = β1 (M,∂M) ≥ n− 1 .

Therefore

(3.15) 1− β1 (M) + n− 1 ≤ χ (M) =
1

2
χ (∂M) = n− 1

2
β1 (∂M)

so

(3.16) β1 (M) ≥ 1

2
β1 (∂M)

as desired. �

Corollary 3.6. Let M be a compact 3-manifold with a boundary component not homeo-
morphic to S2. Then H1 (M) is infinite.

Proof. dimH1 (M ;R) ≥ 1 and by the universal coefficient theorem, this is H1 (M)⊗
R ∼= Rn. Then this is equivalent to

(3.17) H1 (M) ∼= Zn ⊕A

for A some finitely abelian group. �

Lecture 12;
February 27, 2020

Lemma 3.7. Let M be a prime three-manifold, H a finitely generated subgroup of π1 (M)
such that either

(1) H has infinite index in π1 (M), or
(2) M is not closed.

Then H is indicable (i.e. either H = {1} or there is some epimorphism H → Z).
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Proof. If M = S1 × S2 this is clear, since π1 (M) ∼= Z. So we may assume M is
irreducible. In case (2), replacing M by M \ ∂M , we may assume M is noncompact. There

exists a covering M̃ →M with π1

(
M̃
)
∼= H. In both cases, M̃ is noncompact. Now we can

use the Scott Core theorem to show that there is some compact submanifold N of M̃ such

that the inclusion π1 (N)
'
↪−→ π1

(
M̃
)

is an isomorphism. Let S be a 2-sphere component

of ∂N . Corollary 3.3 implies M̃ is irreducible. Therefore S bounds a 3-ball B ⊂ M̃ . If

N ⊂ B, then π1 (N) → π1

(
M̃
)

factors through π1 (B) = 1. So π1

(
M̃
)
∼= H = {1}. So

H is indicable. So assume H 6= {1}. Then we have N 6⊂ B. So replace N with N ∪ B, so
π1 (N ∪B) ∼= π1 (N). So now we can assume N has no 2-sphere boundary components. If

N is closed, then N = M̃ , but this contradicts the fact that M̃ is noncompact. Therefore
∂N 6= ∅, so by Corollary 3.6 H1 (N) is infinite, so π1 (N) ∼= H maps onto Z, so H is
indicable. �

Corollary 3.8. For M a prime 3-manifold, π1 (M) is infinite. Then π1 (M) is torsion-free.

Proof. Suppose we have an element g ∈ π1 (M) of finite order n > 1. Therefore
〈g〉 ∼= Z/n. But this has infinite index in π1 (M), but by Lemma 3.7 this means it is indicable.
But of course it is nontrivial and does not map onto Z, so this is a contradiction. �

Let M be a closed three-manifold with H1 (M ;Z) = 0. Then

(3.18) H2 (M ;Z) ∼= H1 (M ;Z) ∼= Hom (H1 (M ;Z) ,Z) = 0

where the first isomorphism follows from Poincaré duality, and the second follows from the
universal coefficient theorem. Now note that H3 (M ;Z) ∼= H0 (M ;Z) ∼= Z, and Hq (M ;Z) =
0 for q ≥ 4, so

(3.19) H∗ (M ;Z) ∼= H∗
(
S3;Z

)
.

In this case we say M is an integral homology sphere, or ZHSSimilarly, if H1 (M ;Q) = 0
(equivalently H1 (M ;Z) finite) then

(3.20) H∗ (M ;Q) ∼= H∗
(
S3;Q

)
.

In this case we say M is a rational homology sphere, or QHS. As it turns out, there are
infinitely many ZHS’s M with π1 (M) 6= 1. There are also infinitely many QHS’s that are
not ZHS’s. For example, lens spaces are QHS’s.

Let K ⊂ S3 be a knot in S3. Then the tubular neighborhood is N (K) ∼= S2×D2. Now
take

(3.21) X = Cl
(
S3 \N (K)

)
.

Note that ∂X ∼= T 2. Take µ to be some meridional curve in the boundary, and λ some
longitudinal one. There is (up to isotopy) a unique such λ in X such that λ ∼ 0. Now for
any α an essential simply closed curve in ∂X, α ∼ pµ = qλ for (p, q) = 1. Now consider

(3.22) X ∪h
(
S1 ×D2

)
where h : S1 ×D2 → ∂X such that

h
(
pt× ∂D2

)
= α .
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So this gives a closed three-manifold K (α) = K (p/q). This is called the α (or p/q) Dehn
surgery on K. Recall H1 (X) ∼= Z given by µ. So when we add in this solid torus, we’re
killing α. λ was dead anyway, so we’re really just killing the pth power of the meridian. So

(3.23) H1 (K (p/q)) ∼= Z/p .
For for p = 1 we get an ZHS, and for p > 1 we get a QHS. The following is an open question:

Question 3. Does a prime ZHS(which is not S3 or the Poincaré homology sphere)
have left-orderable fundamental group?

This is related to the so-called L-space conjecture.

Theorem 3.9. Let M be a prime 3-manifold. Then π1 (M) is locally indicable. Equiv-
alently, M is S3, or M is not a QHS.

Proof. ( =⇒ ): Suppose M is a QHS. Then π1 (M) is finitely generated. Therefore
π1 (M) LI implies π1 (M) is indicable, so π1 (M) = 1 or H1 (M) is infinite.

(⇐=): Suppose M is not a QHS. Then either

(i) M is closed and H1 (M) is infinite, or
(ii) M is not closed.

Let H be a finitely generated subgroup of π1 (M). In the first case, [π1 (M) : H] =∞ so H
is indicable by Lemma 3.7. If [π1 (M) : H] is finite, then [H1 (M) : h (H)] is finite. Therefore
h (H) is infinite, and so H maps onto Z. Case (ii) follows from Lemma 3.7. �

Since (for G 6= {1}) locally indicable implies LO (from Corollary 2.12).

Corollary 3.10. If M is a prime 3-manifold which is not a QHS, then π1 (M) is LO.

In fact, we can do better, using Theorem 2.13.

Theorem 3.11 ([BRW]). Let M be a prime three-manifold. Then π1 (M) is LO iff
π1 (M) has a LO quotient.

Proof. ( =⇒ ): this direction is trivial.
(⇐=): this follows from Lemma 3.7 and Theorem 2.13. �



CHAPTER 4

Seifert fiber(ed) spaces

Definition 4.1. A Seifert fiber space (SFS) is a compact (orientable) 3-manifold M
that is a disjoint union of circles (called the fibers) such that each circle has a neighborhood
which is a union of fibers and is isomorphic to a fibered solid torus. This is

(4.1)
(
D2 × I

)
/ ((x, 1) ∼ (h (x) , 0))

where h : D2 → D2 is rotation through 2πq/p for p > 0 and (p, q) = 1. The fibers are the
images of 0× I (the central fiber) and

(4.2) (x× I) ∪ (h (x)× I) ∪ . . . ∪
(
hp−1 (x)× I

)
for x 6= 0. If p > 1, the central fiber is exceptional : other fibers are ordinary.

M compact implies there are only finitely many exceptional fibers. Let π : M → F be
the quotient map defined by identifying each fiber to a point. For a fibered solid torus, the
quotient ∼= D2. So F is a surface (called the base surface) and π : ∂M → ∂F is an S1-bundle
projection. Therefore ∂M is the disjoint union of finitely many tori (possible empty). If
M has no exceptional fibers, then π : M → F is an S1-bundle projection. Conversely, an
orientable S1-bundle over F is a SFS.

Let N0 ⊂ int (M) be a fibered solid torus neighborhood of an ordinary fiber, and
(disjoint) Ni ⊂ int (M) solid tori neighborhood of the exceptional fibers with parameters pi,
qi.

Let Di = π (Ni). These are disks in F . Then the restriction

(4.3) π : (M \ qni=1Ni)︸ ︷︷ ︸
M0

→ F \ qni=0Di︸ ︷︷ ︸
F0

is an S1-bundle projection. Let α1, . . . , αk ⊂ F0 be disjoint properly embedded arcs such
that if we cut F0 along qαi, to get F0|qki=1αi, this is a disk B. Then π−1αi is an S1 bundle
over αi, i.e. an annulus Ai ⊂M0. So we have an S1-bundle over B given by

(4.4) M0| qki=0 Ai
∼= B × S1

with copies A±i of Ai inside ∂
(
B × S1

)
. Therefore we can recover M0 by taking the quotient:

M0
∼=
(
B × S1

)
/
(
A+
i ∼ A

−
i , 1 ≤ i ≤ k

)
.
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We can isotope these identifications so that α−i ∼ α+
i . So we actually get a copy of

F0 ⊂M0 which is a section of the S1-bundle:

(4.5) F0 M0 F0⊂
id

π .

Note that π1

(
B × S1

) ∼= Z, generated by the class of the ordinary fiber, written h. Now
there are two cases:

35
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(O) F orientable: g (F ) = g ≥ 0, |∂F | = m ≥ 0. Now π1 (F0) has generators
a1, b1, . . . , ag, bg corresponding to the genus; d1, . . . , dm corresponding to the bound-
ary components; and then c1, . . . , cn for the exceptional fibers. Then since M0

∼=
F0 × S1, we have that

(4.6) π1 (M0) ∼= π1 (F0)× Z

where this copy of Z is generated by h.
(N) F non-orientable: Now π1 (F0) has generators a1, . . . , ag (where these now come

from twisted strips); d1, . . . , dm; and c1, . . . , cn. Now M0 is a twisted S1-bundle
over F0. The presentation is explicitly:

(4.7) π1 (M0) ∼=
〈
a1, . . . , ag, d1, . . . , dm, c1, . . . , cn, h

∣∣∣∣ a−1
i hai = h−1, 1 ≤ i ≤ g,

h↔ di, h↔ ci

〉
.

In both cases, π1 (∂Ni) ∼= Z × Z generated by h and Ci for 0 ≤ i ≤ n. Now let λi and
µi be a longitude, meridian pair for Ni, 0 ≤ i ≤ n. Then π1 (∂Ni) ∼= Z2 is generated by
{λi, µi}. In terms of this basis, an ordinary fiber is:

(4.8) h = λpii µ
qi
i

where the (pi, qi) are the Seifert invariants of the fibered solid torus Ni. Then we can write
the ci’s as:

(4.9) ci = λrii µ
si
i

where pisi − qiri = 1. Therefore we get the relation

(4.10) µi = cpii h
−ri .

Therefore by van Kampen

(4.11) π1 (M) ∼= π1 (M0) / (cpii = hri , 0 ≤ i ≤ n) .

For p0 = 1 let b = −r0. Note that (in π1 (F ))

(4.12) c−1
0 =

{∏g
i=1 [ai, bi]

∏m
i=1 di

∏n
i=1 ci Case (O)∏g

i=1 a
2
i

∏m
i=1 di

∏n
i=1 ci Case (N)

Theorem 4.1. Let M be a SFS. Then in case (O), π1 (M) has presentation:

(4.13)

〈
a1, b1, . . . , ag, bg, d1, . . . , dm, c1, . . . , cn, h

∣∣∣∣h↔ ai, bi, di, ci; c
pi
i = hri ;∏

[ai, bi]
∏
di
∏
ci = hb

〉
.

In case (N), π1 (M) has presentation:

(4.14)

〈
a1, . . . , ag, d1, . . . , dm, c1, . . . , cn, h

∣∣∣∣ a−1
i hai = h−1;h↔ ci, di; c

pi
i = hri ;∏

a2
i

∏
di
∏
ci = hb

〉
.

Remark 4.1. Recall the ai (and bi) come from the base surface, (in the (N) case these
are orientation reversing) the di come from the boundary components, the cn come from
the singular fibers.

Remark 4.2. (1) 〈h〉 is central in π1 (M) in case (O), and normal in case (N).
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(2) The fundamental group of F is

π1 (F ) ∼= π1 (M) / (h = 1, ci = 1, 1 ≤ i ≤ n)

so

π∗ : π1 (M)→ π1 (F )

is onto.
(3) Suppose n > 0, i.e. we have at least one singular fiber. Let α be a properly

embedded arc in F0 joining ∂-components Ci and Cj for 0 ≤ i, j ≤ n, i 6= j. Then
π−1 (α) is an annulus H in M0, with boundary components in ∂Ni and ∂Nj . Now
by Dehn twisting M0 along A, k times gives a homeomorphism M0 → M0. This
is the identity outside of a neighborhood of A, and

on ∂Ni h 7→ h ci 7→ cih
k = c′i

on ∂Nj h 7→ h cj 7→ cjh
−k = c′j

.

Digression 1 (Dehn twists). Let A be a properly embedded4.1 annulus inside
of a 3-manifold M . A has a neighborhood N (A) ∼= A × I ⊂ M . Then Dehn
twist along A is the homeomorphism h : M → M such that h|Cl(M\A) = id, and

h|A×I : A× I → A× I sends

(4.15) ((θ, s) , t) 7→ ((θ = 2πt, s)) .

So the meridians go to:

µi = cpii h
−ri 7→ c′i

pih−r
′
i µj = c

pj
j h
−rj 7→ c′j

pjh−r
′
j

where r′i = ri + kpi and r′j = rj − kpj . Therefore

(4.16)

n∑
i=0

ri
pi

is unchanged. Now recall p0 = 1, r0 = −b so

(4.17) − b+

n∑
i=1

ri
pi

is also unchanged. This is called the Euler number of the Seifert structure.
When n = 0, we just have a circle bundle, and this gives us the Euler number

of this circle bundle. Using this, we can either normalize the ri so that 0 < ri < pi,
or if n > 0, we can take b = 0.

(4) One can sow that M is irreducible unless M ∼= S1 × S2 or RP3#RP3.
(5) For most SFS’s , the SF structure is unique.

4.1Recall this means A ∩ ∂M = ∂A.
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(6) It follows from Perelman that if M is a closed three-manifold with π1 (M) finite,
then M is a SFS. Those with finite π1 are

F = S2 n ≤ 2 M 6∼= S1 × S2
(
S2, lens spaces

)
F = S2 n = 3

3∑
i=1

1

pi
> 1

(
platonic triples : (2, 2, p) ,
(2, 3, 3) , (2, 3, 4) , (2, 3, 5)

)
F = RP2 n = 0, b 6= 0

(
n = b = 0 ; RP3#RP3

)
n = 1

(7) SFS’s are one of the building blocks of the JSJ decomposition of three-manifolds.
The other pieces are hyperbolic three-manifolds.
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Theorem 4.2. Let M be a SFS. Then π1 (M) is BO if and only if M is either S1×S2

or an S1-bundle over an orientable surface not homeomorphic to S2.

Remark 4.3. The S1 bundles over S2 are S1×S2 = L (0, 1), S3 = L (1, 1), and L (p, 1)
for p ≥ 2.

Proof. (⇐=): S1×S2 is immediate. Let M be an S1 bundle over an orientable surface
F 6∼= S2. For any bundle we have a homotopy exact sequence:

(4.18) 1︸︷︷︸
π2(F )

→ π1

(
S1
)︸ ︷︷ ︸

=Z

→ π1 (M)→ π1 (F )→ 1 .

Lemma 4.3. π1 (F ) 6= 1 implies π1 (F ) is BO.

We will prove this later. M orientable implies the conjugation action of π1 (F ) on Z is
by the identity, so the BO on Z is conjugation invariant, so π1 (M) is BO by Theorem 1.13.

( =⇒ ): We first need the following lemma.

Lemma 4.4. In case (N), h 6= 1 ∈ π1 (M).

Proof. First take n = 0. Then we can kill the di’s and ai’s for i > 1 to get the quotient
of π1 (M):

(4.19)
〈
a, h

∣∣ a−1ha = h−1, a2 = hb .
〉

For b even, this has quotient

(4.20)
〈
a, h

∣∣∣ a2 = h2 = (ah)
2

= 1
〉
∼= Z/2× Z/2 .

For b odd, this has quotient

(4.21)
〈
a, h

∣∣ a−1ha = h−1, h2 = 1, a2 = h
〉 ∼= 〈a ∣∣ a4 = 1

〉 ∼= Z/4 .
For n > 9, we also kill the ci for i ≥ 2, so we get a quotient〈

a, c, h
∣∣h2 = 1, a↔ h, cp = hr, a2c = 1

〉 ∼= 〈a, h ∣∣h2 = 1, a↔ h, a2p = h−1
〉

(4.22)

∼=

{
Z/2× Z/2p r even

Z4p r odd
.(4.23)

�

Lemma 4.5. In case (N), π1 (M) is not BO.
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Proof. a−1ha = h−1, and h 6= 1 by Lemma 4.4, so π1 (M) is not BO. �

Lemma 4.6. Suppose G is BO. If hm ↔ g for some n 6= 0, then h↔ g.

Proof. Since x ↔ g iff x−1 ↔ g, we may assume n > 0. Suppose h 6↔ g, i.e.
ghg−1h−1 6= 1. WLOG this means ghg−1h−1 > 1, so ghg−1 > h. Therefore

(
ghg−1

)n
=

ghng−1 > hn, so ghng−1h−n > 1 which is a contradiction. �

Lemma 4.7. In case (O), if g > 0 and n > 0 then π1 (M) is not BO.

Proof. Assume π1 (M) is BO. We have the relation

(4.24) cp11 = hr1 .

Now recall in case (O), h is central, so cp11 is central, so c1 is central (by Lemma 4.6). Now
kill the ai’s , bi’s, di’s and ci’s for i > 1, and h. So we get a quotient

(4.25) 〈a, b, c | cp = 1, c = [a, b]〉 ∼= 〈a, b | [a, b]p = 1〉
for p ≥ 2. Now we have the following lemma:

Lemma 4.8. [a, b] is not central in Gp = 〈a, b | [a, b]p = 1〉 (for p ≥ 2).

Proof. Define a representation Gp → S2p by

(4.26)

a (1 2) (3 4) . . . (2p− 1 2p)

b (1 2 3 . . . 2p)

so we have that

(4.27) b−1ab = (2 3) (4 5) . . . (2p 1) .

Therefore

(4.28) [a, b] = a−1b−1ab = (2 4 6 . . . 2p) (1 2p− 1 . . . 3)

is of order p. Furthermore, a2 = 1 in S2p, so we have

(4.29) a−1 [a, b] a = a−1a−1b−1aba = b−1aba =
(
a−1b−1ab

)−1
= [a, b]

−1

so [a, b] is not central if p ≥ 3. In the case p = 2 we can instead send a 7→ (1 2 3)
b 7→ (2 3 4). �

This lemma completes the proof. �

Lemma 4.9. If case (O), if g = 0, n > 0, and m+ n ≥ 3, then π1 (M) is not BO.

Proof. Recall cpii = hri . This implies cpii is central, which implies ci is central (if
π1 (M) is BO). Then we have three-subcases:

(a) m ≥ 2: Kill h, and all the ci’s except 1, use least to eliminate dm, kill all remaining
di’s except d1. So we get a quotient

(4.30) 〈c, d | cp = 1〉 ∼= Z ∗ Z/p
so c is not central.

(b) m = 1, n ≥ 2: Kill h and eliminate d1. Now kill all but 2 ci’s to get a quotient

(4.31) 〈c1, c2 | cp11 = cp22 = 1〉 ∼= Z/p1 ∗ Z/p2

which is non-abelian.
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(c) m = 0, n ≥ 3: Kill h and all but 3 ci’s. So we get a quotient

(4.32) 〈c1, c2, c3 | cpii = 1, 1 ≤ i ≤ 3, c1c2c3 = 1〉 = T (p1, p2, p3) .

Then c1, c2, and c3 central implies T (p1, p2, p3) is abelian.

Lemma 4.10. T (p1, p2, p3) is nonabelian unless p1 = p2 = p3, in which case it is
Z/2× Z/2.

Proof. Let A1A2A3 be a geodesic triangle with angles π/p1, π/p2, π/p3. If
the sum

(4.33)
1

p1
+

1

p2
+

1

p3

is > 1 this is in the sphere S2, if it is = 1 this is in Euclidean space E2, and if this
is < 1, this is the hyperbolic plane H2. Let ρij be reflection of the plane (S2, E2,
or H2) over AiAj . Then

γ1 = ρ13ρ12 γ2 = ρ21ρ23 γ3 = ρ23ρ12 = (γ1γ2)
−1

.

We can visualize γi as rotation about Ai through 2π/pi. Let Γ (p1, p2, p3) be the
subgroup of Isom+ (of whatever plane we are in) generated by γ1, γ2. Since γpii = 1,
1 ≤ i ≤ 3 and γ1γ2γ3 = 1. Therefore Γ (p1, p2, p3) is a quotient of T (p1, p2, p3). (In
fact, Γ = T .) Clearly Γ (p1, p2, p3) is non-abelian unless p1 = p2 = p3. Therefore
T (p1, p2, p3) is nonabelian unless p1 = p2 = p3. �
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�

Lemma 4.11. In case (O), g = 0, m = 0, n ≥ 3, pi = 2 for all i, π1 (M) is nonabelian
and hence not BO.

Proof. It is enough to do n = 3. (Otherwise just take the quotient.) Now we will kill
h2 instead of h (we can assume b = 0). So since p1 = p2 = p3 = 2, we have that r1, r2, and
r3 are odd. So we get a quotient:
(4.34)〈
c1, c2, c3, h

∣∣h2 = 1, c21 = c22 = h, c1c2c3 = 1
〉 ∼= 〈c1, c2, h ∣∣∣h2 = 1, c21 = c22 = (c1c2)

2
= h

〉
.

Now sending x1 7→ i, c2 7→ j (so (c1c2) 7→ k), and h 7→ −1 we get that the unit quaternion
group is a quotient of this, which is non-abelian. �

( =⇒ ): Now the only cases left after all of these lemmas are g = 0, m = 0, and
n = 0, 1, 2; and g = 0, m = 1, n = 0, 1. If n = 0, then we just have an S1 bundle over S2 or
D2. In the second case we are just a solid torus, and in the first case, it must either be S3,
L (p, 1), or S1 × S2 and only the last one is BO.

If n = 1 or 2, then if m = 0 we have the union of two solid tori, so therefore S3, S1×S2,
or a lens space. If m = 1, then M ∼= S1 × S2. �

1. Left-orderability of π1 SFS’s

For M a SFS, then M is prime iff M is not RP3#RP3. In this case π1
∼= Z/2∗Z/2 which

is certainly not LO. Therefore by Corollary 3.10, unless H1 (M) is a primeQHS (equivalently,
H1 (M) is finite), π1 (M) is LO.

We know π∗ : π1 (M)→ π1 (F ) is onto, so

(4.35) π∗ : H1 (M)→ H1 (F )

is onto. Therefore for M a QHS, F ∼= S2 or RP2.
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Theorem 4.12. If M is a SFS with base surface RP2, then π1 (M) is not LO.

Proof. Recall we have the presentation:

(4.36) π1 (M) =
〈
a, c1, . . . , cn, h

∣∣∣ a−1ha = h−1, h↔ ci, c
pi
i = hri , a2

∏
ci = hb

〉
.

Suppose π1 (M) is LO. a 6= 1 ∈ π1 (M) (since π∗ (a) is a generator of π1

(
RP2

) ∼= Z/2).
Then h 6= 1 ∈ π1 (M) by Lemma 4.4. So we may assume h > 1. Otherwise, reverse the
order.

Lemma 4.13. (1) If a > 1, then a > hk for all k ∈ Z.
(2) If a < 1, then a < hk for all k ∈ Z.

Proof. (1) h > 1 implies h−1 < 1, so if k ≤ 0 we are done. So assume k > 0.
Then hk > 1 > a−1, so 1 > h−ka−1 = a−1hk, so a > hk.

(2) This is similar.
�

Now we treat the following cases.

(a) n = 0:
(a) a > 1: hb = a2 from the last relation, but this means hb > a which contradicts

Lemma 4.13.
(b) a < 1: hb = a2 < 1, which also contradicts Lemma 4.13.

(b) n > 0:
(a) a > 1: From the discussion after Theorem 4.1, we can assume ri > 0 for

1 ≤ i ≤ n. Then cpii = hri > 1, so therefore ci > 1, so
∏
ci > 1, so

hb = a2
∏
cia

2 > a which contradicts Lemma 4.13.
(b) a < 1: Choose ri < 0. Then this contradicts Lemma 4.13.

�

Say a SFS is of type F (p1, . . . , pn) if base surface is F and there are n exception fiber
with pi ≥ 2. So we are left with

(4.37) M = S2 (p1, . . . , pn)

for n ≥ 3. (If n ≤ 2, we have S1 × S2, S3, or a lens space.)

Remark 4.4. Conjecturally, any prime ZHS M (except S3, and the Poincaré homology
sphere) has π1 (M) LO. But this is wide open in general. It is known for graph manifolds,
but whenever there are hyperbolic pieces it is wide open.

Theorem 4.14. (1) Let M be a SFS ZHS 4.2 Then either M ∼= S3 or M is of
type S2 (p1, . . . , pn) where n ≥ 3 and the pi are pairwise coprime.

(2) Let p1, . . . , pn, n ≥ 3 pairwise coprime, pi ≥ 2. Then there is a unique (up to
homeomorphism) SFS ZHS M of type S2 (p1, . . . , pn) (called Σ (p1, . . . , pn)).

4.2“There are a lot of TLA’s in this world.”
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Proof. (1) Since H1 (M) = 0, H1 (F ) = 0, we have F ∼= S2. If n ≤ 2, then
g (M) ≤ 1 and therefore M ∼= S3. For n ≥ 3, H1 (M) is presented by the matrix:

(4.38) A =


1 1 · · · 1 b
p1 0 · · · 0 r1

0 p2 · · · 0 r2

...
...

...
...

...
0 0 . . . pn rn

 .

Then

(4.39) |detA| =
n∏
i=1

pi

(
−b+

n∑
i=1

ri
pi

)
.

Write

(4.40) Π =
n∏
i=1

pi

and define si = Π/pi for 0 ≤ i ≤ n (note s0 = Π, r0 = −b). Then

(4.41) |detA| =
n∑
i=0

risi .

If d divides pi for two distinct indices i, then d|si, 0 ≤ i ≤ n, so therefore if M is
a ZHS, then |detA| = 1, which implies that the pi’s are pairwise coprime.

(2) Suppose p1, . . . , pn are pairwise coprime, ≥ 2 and that n ≥ 3. Then gcd (s0, . . . , sn) =
1. Therefore

(4.42)

n∑
i=0

risi = 1

has a solution (ri)
n
i=0. Also

(4.43) lcm (s0, . . . , sn) = Π

so if (r′i)
n
i=0 is another solution, then there are some integers ki such that

∑
ki = 0,

and

(4.44) r′i = ri + ki

(
Π

si

)
= ri + kipi

for 0 ≤ i ≤ n. So by the discussion after Theorem 4.1, the ri’s and r′i’s give the
same SFS. Finally

(4.45)

n∑
i=0

(−ri) si = −1

but we can replace ri by −ri which just corresponds to reversing orientation, i.e.
taking M → −M . Therefore the ri’s define a SFS ZHSof type S2 (p1, . . . , pn)
which is unique up to homeomorphism.

�
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The proof of the second part tells us the following. First, |H1 (M)| is relatively prime to
the pi’s, and conversely, given d such that (d, pi) = 1, 1 ≤ i ≤ n, then there exists a (unique
up to homeomorphism) SFS of type S2 (p1, . . . , pn), M , with |H1 (M)| = d.
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Recall we showed that if M is of type S1 (p1, . . . , pn) as above, then π1 (M) maps onto
T (p1, p2, p3), so it is infinite unless {p1, p2, p3} = {2, 3, 5}. Therefore:

Theorem 4.15. A SFS ZHSM has π1 (M) infinite unless M ∼= S3 or Σ (2, 3, 5).

Theorem 4.16. Let M be a SFS. Then π1 (M) is LO iff π1 (M) is infinite. (i.e. M 6∼= S3

or Σ (2, 3, 5).)

Proof. ( =⇒ ): This is clear.
(⇐=): By Theorem 4.14, M is of type S2 (p1, . . . , pn), pi’s pairwise coprime n ≥ 3, and

not n = 3, {p1, p2, p3} = {2, 3, 5}. As before, we get an epimorphism

(4.46) π1 (M)→ Γ (p1, p2, p3) < Isom+

(
H2
)
.

Recall S2 corresponded to (2, 3, 5), and Euclidean space corresponded to

(4.47)
1

p1
+

1

p2
+

1

p3
= 1

which gave us (3, 3, 3), (2, 3, 6), and (2, 4, 4). So we in the smallest case we are already in
isometries of the hyperbolic plane H2.

(4.48) SL2 (R) = {A ∈M2×2} .
Note the center is:

(4.49) Z (SL2 (R)) = {±I} ∼= Z/2 .
The quotient is:

(4.50) SL2 (R) / {±I} = PSL2 (R) .

PSL2 (R) is a three-dimensional Lie group. Recall the hyperbolic plane H2 can be thought
of as the interior of the unit disk, where geodesics are given by circles orthogonal to the
boundary. We can also think of it as the upper half plane

(4.51) H2 = R2
+ =

{
(x, y) ∈ R2

∣∣ y > 0
}

where now the geodesics are circle orthogonal to the x-axis, the limiting case being a vertical
line.

PSL2 (R) acts on C by linear fractional transformations. Explicitly for

(4.52) SL2 (R) 3 A =

[
a b
c d

]
the class [A] ∈ PSL2 (R) sends

(4.53) z 7→ az + b

cz + d
.

This action preserves R2
+. It turns out that this gives an isomorphism

(4.54) Isom+

(
H2
)
' PSL2 (R) .

In the disk model, this extends to an action to the boundary ∂D2 = S1 = S1
∞. So

(4.55) PSL2 (R) < Homeo+

(
S1
)
.

PSL2 (R) acts transitively on H2, and for h ∈ H2, Stab (x) ∼= S1. We can think of this as
rotating around x. Therefore we get that:

(4.56) PSL2 (R) ∼= H2 × S1 .
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Therefore π1 (PSL2 (R)) ∼= Z. Write ˜PSL2 (R) for the universal cover of PSL2 (R).

Let G be a connected Lie group. Consider its universal covering p : G̃ → G. This is a
Lie group as well. Then we have the following two facts.

(1) We get a central extension:

(4.57) 1→ π1 (G)→ G̃→ G→ 1 .

In particular, π1 (G) is abelian.

(2) If G acts on X, then G̃ acts on the universal cover X̃.

So we get a central extension

(4.58) 1→ Z→ ˜PSL2 (R)→ PSL2 (R)→ 1 .

And PSL2 (R) acts on S1, so P̃SL2 (R) acts on R, so we can think of it as a subgroup
Homeo+ (R).

Remark 4.5. This is this nice little matrix group, but there is a more general thing
happening here with the much more unruly infinite-dimensional Homeo+

(
S1
)

sitting inside

(4.59) 1→ Z→ ˜Homeo+ (S1)→ Homeo+

(
S1
)
→ 1 .

So PSL2 (R) < Homeo+

(
S1
)

and ˜PSL2 (R) < Homeo+ (R), so what we would really
like is to lift:

(4.60)

1 Z ˜PSL2 (R) PSL2 (R) 1

π1 (M)

ρ
ρ̃

.

Digression 2 (Group (co)homology). Let G be a group. A K (G, 1) is a connected CW-
complex X such that π1 (X) ∼= G and πi (X) = 0, i ≥ 2. Such a group exists and is unique
up to homotopy equivalence. X has the (universal) property that given a homomorphism
ϕ : G→ H, and given a space Y with π1 (Y ) ∼= H, there exists a map f : X → Y such that
f∗ = ϕ.

Now we can define

H∗ (G;A) = H∗ (X,A) H∗ (G;A) = H∗ (X,A) .(4.61)

There are algebraic definitions as well.

Fact 4. For A an abelian group, the central extensions

(4.62) 1→ A→ H → G→ 1

are classified by H2 (G;A).

See appendix A for more.

By this fact, if we have

(4.63)
1 Z H G 1

π

ρ
ρ̃

for some group π, the central extension corresponds to some element e ∈ H2 (G;Z) and
ρ∗ (e) ∈ H2 (π,Z). Then ρ∗e = 0 iff the corresponding central extension 1 → Z → π̃ →
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π → 1 is π̃ = π × Z. This is equivalent to ρ lifting to ρ̃. So here the lift ρ̃ exists iff
ρ∗e = 0 ∈ H2 (π1 (M) ;Z).

Theorem (Hurewicz). Let X be a space with π0 (X) = 0 for 0 ≤ i < n where n ≥ 2.
Then Hi (X) = 0 for 0 ≤ i < n, and the Hurewicz map

(4.64) h : πn (X)→ Hn (X)

is an isomorphism.

Theorem 4.17. Let M be an irreducible three-manifold with infinite π1. Then M is a
K (π1 (M) , 1) (i.e. πi (M) = 0 for i ≥ 2).

Proof. Let M̃ → M be the universal covering. π1

(
M̃
)

= 0, and π2

(
M̃
)
∼= π2 (M),

but by Corollary 3.2, π2 (M) = 0 since M is irreducible. So therefore H2

(
M̃
)

= 0, but M̃

is noncompact since π1 (M) is infinite, so therefore Hi

(
M̃
)

= 0 for for i ≥ 3. So we have a

simply-connected space with trivial higher homology groups, so the higher homotopy groups

πi

(
M̃
)

= 0 for i ≥ 2 from the Hurewicz theorem, but these are the same as the ones for

M , so these vanish too. �

Now return to our problem. We have M a SFS ZHS, π1 (M) infinite. So this means M
is a K (π1 (M) , 1). Then we wanted to lift

(4.65) 1→ Z→ P̃SL2 (R)→ SL2 (R)→ 1

and the obstruction was exactly:

(4.66) ρ∗e ∈ H2 (π1 (M) ;Z) = H2 (M ;Z) ∼= H1 (M ;Z) = 0

by Poincaré duality and the fact that M is a ZHS. So then π1 (M) has a nontrivial homo-

morphism into P̃SL2 (R) < Homeo+ (R), so by the Boyer-Rolfson-Wiest theorem π1 (M) is
LO. This completes the proof of Theorem 4.16. �

Lecture 17; March
31, 2020

Remark 4.6. (1) H1 (M) = 0, so π1 (M) is certainly not locally indicable. Recall
this implies left orderable. At one point people wondered if it was equivalence.
Σ (2, 3, 7) was the first example of a group which was LO but not locally indicable.

(2) Conjecturally, this should hold for any prime ZHSwith π1 infinite, i.e. not S3 or
Σ (2, 3, 5), has π1 (M) LO. This is the L-space conjecture. Which we will presum-
ably state at some point.4.3

4.3This course is a bit like one of Cameron’s favorite books, “The Life and Opinions of Tristram Shandy,
Gentleman” by Laurence Sterne. It is meant to be a biography, but the author keeps getting distracted.

Much like we keep missing the L space conjecture.
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Foliations

Lecture 19; April 7,
2020

We now shift focus to foliations. There is some connection to left-orderability, and the
L-space conjecture suggests a very strong connection in dimension 3.

1. Definition and examples

A foliation F on an n-manifold M (∂M = ∅) is a disjoint union

(5.1)
∐
λ∈Λ

Lλ

of connected k-manifolds, for some 0 ≤ k < n; and a continuous bijection

(5.2) f :
∐
λ∈Λ

Lλ →M

where M is covered by coordinate charts ϕ :
'−→ Rn such that for all λ ∈ Λ

(5.3) ϕ (f (Lλ) ∩ U) = Rk ×Xλ

for some Xλ ⊂ Rn−k. The picture is as in fig. 1.
The codimension of F is n−k. The Lλ, or (by abuse of notation) f (Lλ), are the leaves

of F .

Remark 5.1. (1) Sometimes one imposes various smoothness conditions on F .
(2) There extensions to manifolds with boundary. For example, in codimension 1, we

might insist that the leaves are transverse to the boundary, or that you want the
boundary component to actually be a leaf.

Example 5.1. A fiber bundle F → M → B gives us a foliation of M where the leaves
are the fibers.

U

M
∐
Lλ

. . .

. . .

ϕ−→f−→ ↑
Rn−k

→Rk

Figure 1. Cartoon of a foliation.

46
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Example 5.2. A SFS has a codimension 2 foliation where the leaves are circles (the
Seifert fibers). As it turns out, we have the following.

Theorem (Epstein). If M is a compact 3-manifold with a foliation whose leaves are
circles, then M is a SFS (and the foliation is a Seifert fibration).

Example 5.3. Let M̃ → M be a covering space. If F is a foliation on M , then it lifts

to a foliation F̃ on M̃ .
Conversely, if M̃ → M is a regular G-covering space, and G̃ is a G-invariant foliation

on M̃ , then F̃ /G is a foliation on M̃/G = M .

Example 5.4. Consider the universal cover R2 → T 2. This is an example of example 5.3

for G = Z×Z. For α ∈ R, R2 has a foliation F̃α by fibers of slope α. This is Z×Z-invariant,
so it induces a foliation Fα on T 2.

(i) If α ∈ Q, then the leaves of Fα are circles, so T 2 ∼= S1 × S1 has leaves S1 × {λ}
for λ ∈ S1.

(ii) IF α 6∈ Q, then the leaves of Fα are R. Every leaf is dense in T 2.

Example 5.5. This is similar to the second case of example 5.4. As it turns out, there
is a foliation of T 3 with leaves homeomorphic to R2.

Theorem (Rosenberg-Sondow). If M is a closed 3-manifold with a foliation with leaves
homeomorphic to R2, then M ∼= T 3.

Example 5.6. Consider [−1, 1]× R. This has a foliation F with leaves homeomorphic
to R. See fig. 2. The leaves are the graphs of y = f (x) + c for c ∈ R and suitable f , along
with {±t} × R. F is invariant under the shift (x, y) 7→ (x, y + 1), so we get a foliation on
the quotient by this shift, which is just an annulus [−1, 1] × S1. The leaves are mostly R,
except {±1} × S1.

If we rotate [−1, 1] × R about the y-axis, this foliation induces a foliation on D2 × R,
which induces the Reeb foliation on D2 × S1. The leaves are all R2 except ∂

(
D2 × S1

)
.

From now on, we will only consider foliations of codimension 1. The Reeb foliation is
an example of a codimension 1 foliation on the torus.

Remark 5.2. Reeb’s advisor Ehresmann told him to try to prove that S3 doesn’t have
a codimension 1 foliation. Reeb came back and said, well here’s a foliation of the solid torus,
the leaves are all R2 except the boundary, so it’s codimension 1. So now glue two of these
together to get one on S3. The moral of the story is not to believe what your advisor asks
you to prove. It’s probably rubbish.

2. Codimension one foliations of three-manifolds

Theorem 5.1 (Lickorish; Zieschang). Every closed 3-manifold has a codimension 1
foliation.

This proof uses two classical theorems in 3-dimensional topology.

Theorem (LickorishWallace). Every closed 3-manifold can be obtained by Dehn surgery
on a link in S3.

Theorem (Alexander). Every link in S3 is the closure of a braid.
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−1 1

Figure 2. Foliation of [−1, 1]× R with leaves homeomorphic to R.

Proof of Theorem 5.1. M is a surgery on a link L, and L is the closure of some
braid β. So write L′ for the union of L and the braid axis as in fig. 3.

Now let X = S3 \ int (N (L′)). Notice that X is an F -bundle over S1, where F is an
n-punctured disk, where n is the number of strands of β. Now there is a codimension 1
foliation on X, where the leaves are copies of this punctured disk. The boundary is given
by:

(5.4) ∂X =

m∐
i=0

Ti
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β

braid axis

L

Figure 3. The link L′ obtained by taking the union of L and the braid axis.

where each Ti ∼= T 2, and 1 ≤ m ≤ n is the number of components of L. Near each Ti, we
will perturb this foliation F by spinning the leaves around the Ti to get a new foliation F ′.
The leaves of F ′ are S2 \ {n+ 1 points}, plus the Ti.

Now our manifold is

(5.5) M = X ∪

(
m∐
i=0

Vi

)
where the Vi are solid tori, glued to X along Ti along Ti ↔ ∂Vi. But it doesn’t matter how
these are glued in, because F ′ extends to a foliation of M by putting Reeb foliations on
each Vi. �

Remark 5.3. So this theorem says there are no restrictions on having a codimension
1 foliation, so maybe it isn’t really that interesting. But as we saw, the proof relies heavily
on Reeb foliations.

Remark 5.4. If a manifold M has a codimension 1 foliation (which is cooriented5.1)
then we can define a map from the manifold to itself by pushing off from these leaves. This
doesn’t have any fixed points, and is homotopic to the identity, so by the Lefschetz fixed
point theorem, the Euler characteristic of the manifold is 0. So there was a whole business of

5.1We can assume this without much loss of generality.
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finding these foliations. But then Thurston came along and wiped the field out by proving
the following theorem.

Theorem. A closed n-manifold M has a codimension 1 foliation iff χ (M) = 0.

Consider

(5.6) RP3
0 = RP3 \ 3-ball .

This is a twisted I-bundle over RP2. This has 2-fold cover S2 × [−1, 1]. Write τ : S2 ×
[−1, 1] 	 for the covering transformation

(5.7) τ (x, t) = (−x,−t) .

Therefore RP3#RP3 has a 2-fold cover S2 × S1. So RP3
0 has a foliation F with leaves given

by copies of S2, except one RP2. Then F̃ is the standard foliation on S2 × S1 with leaves
given by S2 × {pt}.

Remark 5.5. This is like how there is a foliation of the Möbius band where each leaf
is a circle, all of which wrap around twice except one.

3. Reeb stability, transverse loops, and Novikov’s theorem

The following is a special case of Reeb stability.

Theorem (Special case of Reeb stability). Let M be a closed 3-manifold with a foliation
F with a leaf homeomorphic to S2, or RP2. Then M ∼= S2×S1, or RP3#RP3, and F is as
above.

Let F be a codimension 1 foliation on M . A transverse loop in M is a loop which is
transverse to F .

Lemma 5.2. If M is compact then there is a transverse loop in M .

Proof. Start at some x0 ∈ L in some coordinate neighborhood. Proceed transversely.
M is compact, so we eventually return to some previously visited coordinate neighborhood.
Now we join them up. If we come back in the wrong direction, then we proceed until we
come back a second time, and join up with the appropriate one. �

Theorem (Novikov’s Theorem). Let F be a Reebless foliation F on a closed three-
manifold not homeomorphic to S2 × S1 or RP3#RP3. Then

(1) for any leaf L of F , π1 (L)→ π1 (M) is injective,
(2) every transverse loop is essential.

Lecture 20; April 9,
2020

Remark 5.6. Recall we say that every 3-manifold has a codimension 1 foliation. So
there are no restrictions. But the construction relied heavily on the Reeb foliation. So this
says that when we have Reebless ones we do get restrictions, so it’s much more interesting.

By Lemma 5.2, F has a transverse loop γ. Then γn is also transverse for all n ≥ 1.
Therefore, by (2) of Novikov’s Theorem, [γ] has infinite order in π1 (M). Therefore π1 (M)

is infinite. So the universal cover M̃ is noncompact. We can lift the foliation to F̃ . Then

by (1) of Novikov’s Theorem π1

(
L̃
)

= 1 for all leaves L̃ of F̃ . So by Reeb stability, and by

our assumption on M , no leaf L is S2 or RP2, so every leaf L̃ of F̃ is just

(5.8) L̃ = R2 .
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Therefore the following applies to
(
M̃, F̃

)
.

Theorem (Palmeira’s Theorem). Let F be a foliation with leaves ∼= R2 of a simply
connected 3-manifold M . Then

(5.9) (M,F) ∼=
(
R2,L

)
× R

where L is a foliation of R2 with leaves ∼= R1.

Remark 5.7. Palmeira proved the analogue in all dimensions.

Corollary 5.3. Under the hypothesis of Novikov’s Theorem, M̃ ∼= R3. Equivalently, M is
irreducible and π1 (M) is infinite.

4. Taut foliations

Definition 5.1. Let F be a foliation of a closed 3-manifold M . F is taut if F has a
transverse loop γ such that for all leaves L, L ∩ γ 6= ∅.

If we have Reeb foliations as in fig. 2, we can’t have such a transverse loop as in
definition 5.1. So

taut =⇒ Reebless.

The converse is false.

Counterexample 3. Let T0 be a once-punctured torus, to ∂T0 = S1. Then take
X = T0×S1. Spinning the T0×{pt}’s around ∂X gives a foliation F of X. Let M = X ′∪∂X
where X ′ is just a copy of X. Then F and F ′ give a foliation F∗ on M . The boundary
T = ∂X ′ = ∂X ′ ⊂M is Reebless, but not taut. G

But they are almost equivalent. When we play a game such as counterexample 3, we
are forced to have a torus leaf, and we have the following theorem.

Theorem (Goodman). If a foliation F on a closed 3-manifold M is not taught, then
F has a torus leaf.

5. Coorientable foliations

Definition 5.2. If F is a codimension 1 foliation on a closed n-manifold M , we say F
is co-orientable if there is a consistent transverse orientation to the leaves of F .

Remark 5.8. (1) If M is orientable and F has a nonorientable leaf, then F is not
coorientable.

(2) The foliations on 3-manifolds constructed in Theorem 5.1 are coorientable.
(3) Take the Reeb foliation on [−1, 1]×S1. If we identify {±1}×S1, we get a foliation

on T 2. One leaf is S1, and the rest are R. This is not co-orientable.

(4) Every codimension 1 foliation (M,F) has a 2-fold cover
(
M̃, F̃

)
such that F̃ is

coorientable. So H1 (M ;Z/2) = 0 implies F is coorientable.

Theorem 5.4. Let M be a closed n-manifold. If M has a codimension 1 foliation F ,
then χ (M) = 0.

Proof. From the above remark, there is a 2-fold cover M̃ → M such that M̃ has a

foliation F̃ which is coorientable. This implies there is a nowhere vanishing vector field on

M̃ . This implies χ
(
M̃
)

= 0, but χ
(
M̃
)

= 2χ (M), so χ (M) = 0. �
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Conjecture 3 (Half of the L-space conjecture). If M is a closed prime 3-manifold,
then M has a coorientable taut foliation (CTF) if and only if π1 (M) is LO.

Theorem (Gabai). If M is a closed prime 3-manifold, with H1 (M) infinite, then M
has a CTF.

Gabai’s theorem and Corollary 3.10 imply that this conjecture is true forH1 (M) infinite.
Recall Theorem 3.9 said that for M a prime closed 3-manifold, then π1 (M) is locally
indicable iff H1 (M) is infinite. Again being locally indicable implies LO. So the other
option is that M is a QHS. We will see this conjecture is true for SFS QHSthis conjecture
is true.

6. The leaf space

Let F be a codimension 1 foliation on closed n-manifold M . The leaf space Λ = Λ (F)
of F is the quotient space of M by identifying each leaf to a point.

Example 5.7. Recall from example 5.4 the torus gets a foliation induced by a line in
R2 of rational slope. Then the leaf space is just the transverse meridian.

If we take the foliation we get from a line of irrational slope from example 5.4, every
leaf is dense, so the leaf space is uncountable, but every point is dense. So it is not even T1.
So as a topological space this is really bad.

From now on, a 1-manifold will be a second countable topological space (possibly non-
Hausdorff) such that every point has a neighborhood ∼= R. So Λ for the second part of the
previous example is not a 1-manifold.

Example 5.8. Consider a foliation of R2 with leaves R given as follows. Outside of
the strip [−1, 1] × R foliate by vertical lines, and inside the strip foliate as in fig. 2. Call
the leaves inside the strip Lt, indexed by their intersection with the axis {0} × R. Then
{±1} × R are leaves we will write as L±.

Every neighborhood of L± meets

(5.10)
⋃
t≤t0

Lt

for some t0. The leaf space looks like

(5.11)

where the black points are the the images q (L−) and q (L+), and they don’t have disjoint
neighborhoods. So it is locally Euclidean, but not Hausdorff.

Theorem 5.5. Let L be a codimension 1 foliation of R2. Then

(1) every leaf ∼= R,
(2) Λ (L) is a simply-connected 1-manifold.
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Proof. (1) If not, then F has a leaf L ∼= S1. L bounds a disk D ⊂ R2, and L|D
is a foliation of D, with ∂D a leaf. Therefore we get a foliation on D ∪∂ D ∼= S1,
and χ

(
S2
)
6= 0 which is the desired contradiction.

(2) We will prove this later.
�

6.1. R-covered foliations.

Definition 5.3. Let F be a foliation on a closed 3-manifold M . Then F is R-covered

if Λ
(
F̃
)
∼= R where F̃ is the lift of F̃ to the universal cover M̃ .

Example 5.9. Let M be an F -bundle over S1, where F is a closed orientable surface.

Then if F is the foliation of M with leaves ∼= F , then M̃ ∼= R3, and Λ
(
F̃
)
∼= R.

Theorem (Brittenham; Goodman-Shields). Let F be an R-covered foliation on a closed
3-manifold M 6∼= S2 × S1 or RP3#RP3. Then F is taut.

Lecture 21; April
14, 2020

So the point is that by Novikov’s Theorem and Palmeira’s Theorem,

R-covered =⇒ taut(5.12)

=⇒ Reebless(5.13)

=⇒
(
M̃, F̃

)
∼=
(
R2,L

)
× R(5.14)

where L is a foliation of R2 with leaves ∼= R. But then we have

(5.15) Λ
(
F̃
)
∼= Λ (L)

so F is R-covered iff Λ (L) ∼= R. But this is equivalent to:

(5.16)
(
R2,L

) ∼= (R, {t})× R2

with the product foliation with leaves ∼= R2.
There are 3-manifolds with foliations but no R-covered foliations. In [B3], Brittenham

gave some examples which are graph manifolds. In [F] Fenley gave some examples which
are hyperbolic.

Theorem 5.6. Let M be a closed 3-manifold with a co-orientable R-covered foliation
F . Then π1 (M) is LO.

Proof. π1 (M) acts on
(
M̃, F̃

)
. Hence on Λ

(
F̃
)
∼= R. F is co-orientable, which

implies F̃ is co-orientable, and the action of π1 (M) preserves the transverse orientation, so
the action on R is by orientation preserving homeomorphisms.

Since M is compact, there is some compact C ⊂ M̃ such that for all x ∈ M̃ , there is

g ∈ π1 (M) such that g (x) ∈ C. Then for all λ ∈ Λ
(
F̃
)

, there is g ∈ π1 (M) such that

g (λ) ∈ q (X) where

(5.17) q : M̃ → Λ
(
F̃
)
∼= R

is the quotient map. Therefore the action of π1 (M) on R is nontrivial, so we get a nontrivial
homomorphism π1 (M) → Homeo+ (R). If M ∼= S1 × S2, then π1 (M) is LO. And M 6∼=
RP3#RP3, since π1

∼= Z/2 ∗ Z/2. In all other cases, M̃ ∼= R3, so M is irreducible, therefore
prime, so by Theorem 3.11, π1 (M) is LO. �
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7. Back to SFS’s

A good source of R-covered foliations is the following. Let M be a (closed) SFS. A
foliation F on M is horizontal if each Seifert fiber is transverse to F .

Note. Horizontal implies taut.

This is because every leaf meets some Seifert fiber. Therefore M̃ ∼= R3 or S2 × R by

Novikov’s Theorem. Assume M̃ ∼= R3. Therefore there is some foliation L of R2 such that

(5.18)
(
M̃, F̃

)
∼=
(
R2,L

)
× R

so the leaves of F̃ are ∼= R2. The codimension 2 foliation of M by circles, namely by the

Seifert fibers lifts to a foliation of M̃ with leaves homeomorphic to R. So M̃ is a product
R-bundle over R2.

Every Seifert fiber in M has a Seifert fibered neighborhood

(5.19) ∼= S1 ×D2 = q−1 (D)

for D ⊂ F where F is the base surface. So we have a diagram

(5.20)
M̃ M

R2 F

p q

such that

(5.21) F̃ ∩
(
S1 ×D2

)
=
{
{t} ×D2

∣∣ t ∈ S1
}
.

Up in M̃ ∼= R3, every R× {x} has a neighborhood homeomorphic to R×Dx, where Dx is
a disk in R2, and

(5.22) F̃ ∩ (R×Dx) = (R, {t})×Dx .

So the leaves are all just R2, and they just intersect these vertical infinite cylinders in these
meridian disks.

If L is a leaf of the foliation of M̃ , consider the restriction of p|L : L→ R2. By (5.22),
p (L) is open in R2. Also by eq. (5.22), if x ∈ R2 \ p (L), then

(5.23) Dx ∩ p (L) = ∅ ,

so p (L) is closed in R2 as well. Therefore it is all of R2. Now the inverse of one of these
disks is:

(5.24) (p|L)
−1

(Dx) = (L ∩ R× {x})×Dx ,

i.e. just a disjoint union of disks which each map homeomorphically onto Dx. Therefore
this is a covering projection. Since L is connected, p|L : L→ R2 is a homeomorphism.

The point is the following theorem.

Theorem 5.7. A horizontal foliation on a SFS is R-covered.

Proof. Let z ∈ R3. There is some leaf L of F̃ such that z ∈ L. This leaf L has to meet
R0 = R×{0} in a unique point t. Let (t, 0) = L∩R0 be this point. Then define α : R3 → R
by

(5.25) α (z) = t .
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Note α is continuous, onto, and α|R×{x} is one-to-one. So now we can make the leaves

“horizontal”. Define H : R3 → R3 = R× R2 by sending

(5.26) H (z) = (α (z) , p (z)) .

Then H is a continuous bijection, so it is a homeomorphism by invariance of domain. H

takes F̃ to a foliation of R3 by {t} × R2, for t ∈ R, so Λ
(
F̃
)
∼= R. �

Corollary. If M is a closed SFS with a coorientable horizontal foliation, then π1 (M)
is LO.

Theorem 5.8. Let M be a SFS QHS. If π1 (M) is LO, then M has a coorientable
horizontal foliation.

We know

horizontal =⇒ R-covered =⇒ taut

so this theorem says it is in fact R-covered, so taut.

Proof. Recall from Theorem 1.20 π1 (M) LO implies there is a monomorphism

(5.27) ϕ : π1 (M)→ Homeo+ (R) .

So we have an action on R, and then we want to construct an action on R2, and fit them
together to act on R2 × R. Then out manifold will be quotient of this. The idea is that
these first copies of R are lifts of the Seifert fibers.

Recall Fix (G) is the fixed point set of G:

(5.28) Fix (G) = {x ∈ R | g (x) = x∀g ∈ G} .

The action is fixed-point free if Fix (G) = ∅.

Lemma 5.9. If there is a nontrivial homomorphism G → Homeo+ (R), then there exists
one such that the corresponding action is fixed-point free.

Proof. This is nontrivial, so Fix (G) ( R is proper and closed. So its complement is a
nonempty disjoint union of open intervals. Each interval is G-invariant, so just restrict the
action to some interval, and reparameterize as R. �

Let M be a SFS QHS with π1 (M) LO. Recall this means M is of type S2 (p1, . . . , pn)
for n ≥ 3, and π1 is explicitly:

(5.29) π1 (M) =

〈
c1, . . . , ck, h

∣∣∣∣∣h↔ ci, c
pi
i = hri ,

n∏
i=1

ci = hb

〉
.

Then π1 (M) LO implies there is a homomorphism π1 (M)→ Homeo+ (R) which has corre-
sponding action which is fixed-point free.

Lemma 5.10. Let g ∈ Homeo+ (R). If gm (x) = x for some m 6= 0 then g (x) = x.

Proof. Suppose g (x) 6= x, say g (x) > x. Then g is order preserving, so g2 (x) >
g (x) > x, etc. �

Lemma 5.11. Fix (h) = ∅.
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Proof. Suppose h (x) = x. Then cpii = hri so

(5.30) cpii (x) = x

so by Lemma 5.10, ci (x) = x. But these generate the group, so for all g ∈ π1 (M) g (x) =
x. �

Lemma 5.12. The action of 〈h〉 on R is free and properly discontinuous. So it is a covering
space action.

Proof. The action is free by Lemmata 5.10 and 5.11. Recall the definition of a properly
discontinuous action of G on X is that for any compact C ⊂ X, g (C) ∩ C = ∅ for all but
finitely many g ∈ G.

WLOG, h (x) > x for all x ∈ R. Therefore there is some neighborhood U of x such that

(5.31) hr (U) ∩ U = ∅

for all r 6= 0. �

Remark 5.9. This implies that h is conjugate (in Homeo+ (R)) to translation τ : R→ R
where τ (x) = x+ 1.

Since Lemma 5.12 implies this is a covering space action, we have two covering spaces
R → R/ 〈h〉 and R → R/ 〈τ〉, but in both cases the quotient is S1. So just write down any
homeomorphism f : S1 → S1, and it lifts:

(5.32)

R R

R 〈h〉 ∼= S1 R/ 〈τ〉 ∼= S1

f̃

f

and then f̃hf̃−1 = τ .

Exercise 5.1. Show that this implies h is conjugate to τ .

Lecture 22; April
16, 2020

Now

π1 (M) / 〈h〉 =

〈
c1, . . . , cn

∣∣∣∣∣ cpii = 1,
∏
i

ci = 1

〉
(5.33)

= T (p1, . . . , pn)(5.34)

where n ≥ 3 and pi ≥ 2. Recall for a Euclidean n-gon, with angles αi, 1 ≤ i ≤ n. Then the
exterior angles are the complements π − αi, and the sum is

(5.35)

n∑
i=1

(π − αi) = 2π .

There exists an n-gon P = P (p1, . . . , pn) in

S2

E2

H2

 with angles π/pi if

(5.36)

n∑
i=1

1

pi

>=
<

 (n− 2) .
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We treated the n = 3 case in Lemma 4.10. So let n ≥ 4, where we have

(5.37)

n∑
i=1

1

pi
≤ n

2
≤ n− 2

with equality iff n = 4 and

(5.38) p1 = p2 = p3 = p4 = 2 .

In the Euclidean plane, we just have a square. So now assume P ⊂ H2.

Let Γ̃ denote the subgroup of Isom
(
H2
)

generated by the reflections p1, . . . , pn. This

has an index 2 subgroup Γ < Γ̃ generated by the rotations γ1, . . . , γn from the proof of
Lemma 4.9. So Γ < Isom+ (Hn).

Lemma (Poincaré’s lemma). (1) The images of the geodesic rays containing AiAi+1

give a tiling of H2 by the translations of P under Γ̃. P is a fundamental domain

for the action of Γ̃.
Similarly, P ∪ p1 (P ) is a fundamental domain for Γ.

(2) The quotient map T (p1, . . . , pn)→ Γ is an isomorphism. I.e.

(5.39) Γ =

〈
γ1, . . . , γn

∣∣∣∣∣ γpii = 1,
∏
i

γi = 1

〉
.

The upshot is that

(5.40) Γ ∼= π1 (M) / 〈h〉 .

Lemma 5.13. If G ∈ Γ has a fixed point (∈ H2), then g is conjugate to some γi.

Proof. If g fixes a vertex in the tiling, then a conjugate of g fixes some Ai. Recall an
orientation preserving isometry of H2 is either

• elliptic: one fixed point in H2,
• parabolic: one fixed point in the circle at infinity,
• hyperbolic: two fixed points in the circle at infinity.

Since P ∪ p1 (P ) is a fundamental domain for Γ, g can’t fix any point in the interior. �

So now we have this quotient

(5.41) π1 (M)→ π1 (M) / 〈h〉 = Γ ↪→ Isom+

(
H2
)

which gives an action of π1 (M) on H2. Then

(5.42) π1 (M) ↪→ Homeo+ (R)

gives an action of π1 (M) on R. Now define the diagonal action of π1 (M) on H2 × R by
g (x, t) (g (x) , g (t)). The point will be that this is a covering space action, and the quotient
is just M .

Lemma 5.14. This action of π1 (M) on H2 × R is

(1) free, and
(2) properly discontinuous.

Proof. (1) Suppose we have g such that g (x, t) = (x, t). Let g 7→ g ∈ Γ (under
the quotient map). So g (x) = x. Therefore g is conjugate to γki . Then g is
conjugate to cki h

` so there is w such that

(5.43) g = w−1
(
cki h

`
)
w .
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Now g (t) = t, so

(5.44) xki h
` (e) = s

where s = w (t). Therefore

(5.45) ckpii hlpi (s) = s

but

(5.46) ckpii hlpi = hkri+`pi

but h acts freely on R by Lemma 5.12, so kri + `pi = 0. Since pi and ri are
relatively prime, this means k = api for some a ∈ Z. So g is conjugate to

(5.47) capii h` = hari+`

so this acts freely by Lemma 5.12.
(2) Now we show this action is properly discontinuous.

Lemma. Let H / G. Suppose that G/H acts properly discontinuously on X,
and G acts on Y such that the action of G on Y is properly discontinuous. Then
the diagonal action of G on X × Y is properly discontinuous.

Exercise 5.2. Prove this.

�

Hence

(5.48) H2 × R→ H2 × R/π1 (M)

is a covering projection with Hausdorff quotient. Therefore the quotient is a closed Hausdorff
3-manifold. It is irreducible, and π1 (N) ∼= π1 (M), so N ∼= M . E.g. by Perelman.

Now the lines {x} ×R foliate H2 ×R, so we get a foliation of M with leaves S1. Hence
by Epstein, this is a Seifert fibration of M . The planes H2 × {t} give a horizontal foliation
F on M . Then the action of π1 (M) on R is orientation preserving so F is coorientable.

�

Remark 5.10. Theorem 5.8 is false without the assumption that M is a QHS. For
example, let M be and S1-bundle over a closed orientable surface of genus g ≥ 2 with Euler
number e = −b.

Theorem (Milnor-Wood [M4,W2]). M has a horizontal foliation iff |e| ≤ 2g − 2.

Corollary 5.15. Let M be a SFS ZHS which is not S3 or Σ (2, 3, 5). Then M has a
coorientable horizontal foliation (π1 (M) is LO, by Theorem 5.6).

Conjecture 4. Every ZHS besides S3 or Σ (2, 3, 5) has a coorientable taut foliation.

Lecture 23; April
21, 2020

Remark 5.11. The Milnor-Wood theorem was generalized by Eisenbud-Hirsch-Neumann
[EHN], Jenkins-Neumann [JN], and Naimi [N] to say exactly when a SFS has a coorientable
horizontal foliation. For a SFS QHSwith π1 infinite, infinitely many do, and infinitely many
don’t.

Remark 5.12. The restriction to horizontal foliations is not necessary.

Theorem 5.16 (Brittenham [B2]; Claus [C1]). Let M be a SFS. If F is a coorientable
taut foliation with no compact leaves, then F is isotopic to a horizontal foliation.



7. BACK TO SFS’S 59

For M a QHS, any compact orientable surface separates M . So no compact leaf can
have a transverse loop. So

taut =⇒ no compact leaves.

So combining this with the H1 infinite case we get the following.

Theorem 5.17. Let M be a closed SFS. Then M has a coorientable taut foliation iff
π1 (M) is LO.



CHAPTER 6

Biorderability

We will show that free groups (and closed orientable surface groups) and right-angled
Artin groups are biorderable.

1. Residual nilpotence

Let H < G. The commutator subgroup [G,H] is the subgroup generated by elements of
the form g−1h−1gh. The lower central series of G is

(6.1) G = G0 > G1 > G2 > . . .

where

(6.2) Gn+1 = [Gn, G]

for n ≥ 0. Note that for ϕ : G→ H a homomorphism we have

(6.3) ϕ (Gn) < Hn .

So Gn is a fully invariant subgroup of G. In particular, Gn / G, so (6.1) is a central series,
meaning the successive quotients are central.

Lemma 6.1.

(6.4) 1→ Gn/Gn+1 → G/Gn+1 → G/Gn → 1

is a central extension. In particular Gn/Gn+1 is abelian.

Proof. If x ∈ Gn, g ∈ G, then [x, g] ∈ Gn+1. Therefore the images x ∈ Gn/Gn+1,
g ∈ G/Gn+1 satisfy [x, g] = 1, so they commute. �

G is nilpotent if Gn = {1} for some n. The least such n is the nilpotence class of G.

Example 6.1. If n = 0, G = {1}.

Example 6.2. If n = 1, G is abelian.

Recall the derived series of G is

(6.5) G = G(0) > G(1) > . . .

where

(6.6) G(n+1) =
[
G(n), G(n)

]
for n ≥ 0. For ϕ : G→ H a homomorphism, we get

(6.7) ϕ
(
G(n)

)
< H(n)

so G(n) / G. G is solvable if G(n) = {1} for some n.
Note that G(n) < Gn so we have

60
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abelian =⇒ nilpotent =⇒ solvable.

Example 6.3. S3 is solvable and not nilpotent. We have

(6.8) 1→ Z/3︸︷︷︸
〈(123)〉

→ S3 → Z/2→ 1 .

The derived series terminates since G(1) = Z/2, and G(2) = {1}. But

(6.9) (123) = [(123) , (12)] ∈ G2

so therefore

(6.10) Z/3 = G1 = G2 = . . .

so the lower central series never terminates.

Note that the properties of being abelian, nilpotent, and solvable are closed under
subgroups and quotients.

Lemma 6.2. Suppose G is n-nilpotent and x ∈ G. Then H = 〈x,G1〉 / G and is (n− 1)-
nilpotent.

Proof. Note that

(6.11) H = {xrc | t ∈ Z, c ∈ G1}

since

(6.12) xrc · xsd ≡ xr+scd (mod G2) .

(1) If g ∈ G, then

(6.13) g−1 (xrc) g ≡ xr (mod G1)

so H / G.
(2) We claim H1 < G2.

[xr, xsd] = c−1x−rd−1x−sxrcxsd(6.14)

= c−1x−rd−1xrx−scxsd(6.15)

≡ x−1x−scxsx−rd−1xrd (mod G2)(6.16)

= [c, xr] [xr, d](6.17)

so Hm−1 < Gm for all m ≥ 2. Therefore Hn−1 < Gn = {1}.
�

For any group G, define

(6.18) Tor (G) =
{
g ∈ G

∣∣∃k 6= 0 s.t. gk = 1
}
⊂ G .

Theorem 6.3. If G is nilpotent then Tor (G) is a (characteristic) subgroup of G.

Proof. We will induct on the nilpotence class of G. For n = 1, G is abelian. For
n > 1, let a, b ∈ Tor (G). We must show

(6.19) ab ∈ Tor (G) .

Let H = 〈b,G1〉. By the inductive hypothesis and Lemma 6.2, Tor (H) is a characteristic
subgroup of G. Buy Lemma 6.2, H / G, so Tor (H) / G.
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Suppose ak = 1 for some k 6= 0. Then

(ab)
k

=
(
aba−1

)
a2ba−2

(
akba−k

)
ak(6.20)

∈ Tor (H)(6.21)

so therefore (ab)
k

has finite order, so (ab) has finite order. �

Later we will need the following.

Theorem 6.4 (Unique extraction of roots). Let G be torsion free and nilpotent, and
a, b ∈ G. If ak = bk for k 6= 0, then a = b.

Proof. Induct on nilpotence class n of G For n = 1, G is abelian so

(6.22) ak = bk =⇒
(
a−1b

)k
= 1 =⇒ a−1b = 1 =⇒ a = b

as desired.
For n > 1

(6.23)
(
b−1ab

)k
= b−1akb = ak .

On the other hand,

(6.24) b−1ab = a [ab]

so therefore a and b−1ab are both elements of 〈a,G1〉. But this group has nilpotence class
(n− 1) by Lemma 6.2. So by the inductive hypothesis b−1ab = a. So

(6.25) 1 = a−kbk =
(
a−1b

)k
so a−1b = 1, and a = b. �

Let ϕ : G→ Gn denote the quotient. Define

G (n) := ϕ−1 (Tor (G/Gn))(6.26)

=
{
g ∈ G

∣∣∃k 6= 0 s.t. gk ∈ Gn
}
.(6.27)

By Lemma 6.2, since G/Gn is nilpotent we have G (n) / G. Then we have a central series:

(6.28) G = G (0) > G (1) > G (2) > . . .

called the rational lower central series of G.
For ϕ : G→ H a homomorphism we get

(6.29) ϕ (G (n)) < H (n) .

Lemma 6.5. G/G (n) is torsion-free nilpotent.

Proof. Suppose g ∈ G, and gm ∈ G (n) for some m 6= 0. Then

(6.30) (gm)
k ∈ Gn

for some k 6= 0. Therefore g ∈ G (n), so G/G (n) is torsion free.
Now notice Gn < G (n), so therefore G/G (n) is a quotient of G/Gn, so nilpotent. �

Lemma 6.6. [G (n) , G] < G (n+ 1) so {G (n)} is a central series.
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Proof. Let x ∈ G (n), g ∈ G, xk ∈ Gn for some k 6= 0. Then

(6.31)
[
xk, g

]
∈ Gn+1 < G (n+ 1)

so therefore

(6.32) x−kg−1xkg ≡ 1 (mod G (n+ 1))

so therefore

(6.33) g−1xkg ≡ xk (mod G (n+ 1))

so by Lemma 6.5 and Theorem 6.4,

(6.34) g−1xg ≡ x (mod G (n+ 1))

so

(6.35) [x, g] ∈ G (n+ 1) .

�

Remark 6.1. {G (n)} is the most rapidly decreasing central series with G/G (n) torsion-
free.

Lemma 6.7. G is torsion-free nilpotent iff G (n) = 1 for some n.

Exercise 6.1. Prove this.

The torsion-free nilpotence class is the least such n.

Theorem 6.8. If G is torsion-free nilpotent, then G is BO.

Proof. Induct on the torsion-free nilpotence class n. For n = 0, G = {1}. So assume
it is true for some n. By Lemma 6.6 we have a central extension

(6.36) 1→ G (n) /G (n+ 1)→ G/G (n+ 1)→ G/G (n)→ 1 .

G/G (n) is of torsion-free nilpotence class (n− 1), so the inductive hypothesis applies to it.
Then G (n) /G (n+ 1) is torsion-free abelian, so it has a conjugacy invariant BO. (Recall
for G abelian, G is BO iff G is torsion-free.) The upshot is, that

(6.37) G = G/G (n+ 1)

is biorderable by Theorem 1.13. �

By Corollary 2.10 residually BO implies BO.

Corollary 6.9. If G is residually torsion-free nilpotent, then G is BO.

Lemma 6.10. (1) G being residually nilpotent if and only if

(6.38)

∞⋂
n=0

Gn = {1} .

(2) G is residually torsion-free nilpotent if and only if

(6.39)

∞⋂
n=1

G (n) = {1} .

Exercise 6.2. Prove this.
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2. Free groups

Now we will work towards proving the following.

Theorem 6.11. Free groups are residually torsion-free nilpotent.

Corollary 6.12. Free groups are BO.

Warning 6.1. Torsion free and residually nilpotent does not imply residually torsion-
free nilpotent.

Example 6.4. For

(6.40) G =
〈
a, b, c

∣∣ a2, b2central; a2b2 = c2
〉

one can show that G is torsion-free free and residually nilpotent. But it is not BO, so not
residually torsion-free nilpotent.

This is not BO because it has generalized torsion. For example, let g = abc−1. This is
a nontrivial element, but

(6.41) (ac)
−1
g (ac) · c−1gc · a−1ga · g = 1 .

I.e. we have a product

(6.42)

k∏
i=1

x−1
i gxi = 1

for some xi.

Question 4 (Motegi-Teragaito [MT]). Let M be a 3-manifold, possible with boundary,
with H1 (M) infinite. Does π1 (M) not BO imply π1 (M) has generalized torsion?

Remark 6.2. There exists a group G which is not BO and has no generalized torsion.

Lecture 24; April
23, 2020

Let

(6.43) Φ = Z JX1, . . . , XmK

be the ring of formal power series with Z coefficients in non-commuting variablesX1, . . . , Xm.
For example

(6.44) Φ 3 2−X1 + 5X3 −X1X2 + 2X2X1 − 6X2
1X3X2X1 + · · · .

A general f ∈ Φ is a formal (possibly infinite) sum of terms

(6.45) f =
∑

nQQ

where Q is a monomial

(6.46) Q = Xn1
ρ1 X

n2
ρ2 . . . X

nk
ρk

where ni ≥ 1, and ρi+1 6= ρi for 1 ≤ i < k. When k = 0 we just have the empty monomial
1. The degree of Q is

(6.47) degQ =

k∑
i=1

ni ,

the length of Q is k, and the degree of f is

(6.48) deg f = min {degQ} .
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Note that Z is a subring of Φ. There is a retraction

(6.49) r : Φ→ Z

given by

(6.50) r (Xi) = 0

for 1 ≤ i ≤ m. The kernel of r is the 2-sided ideal I ⊂ Φ generated by Xi for 1 ≤ i ≤ m.
Note that

I = {f ∈ Φ |deg f > 0} .(6.51)

Note that

(6.52) deg (fg) = deg (f) + deg (g) ,

(6.53) In = {g ∈ ϕ |deg f ≥ n} ,

and

(6.54)

∞⋂
n=0

In = {0} .

Now write U (Φ) for the group of units in Φ. Note that u ∈ U (Φ) implies

(6.55) u ≡ ±1 (mod I) .

Lemma 6.13. (1 +Xi) ∈ U (Φ).

Proof. (1 +Xi)
−1

= 1−Xi +X2
i − · · · . �

Let f be the free group on the set {x1, . . . , xm}. Now the assignment

(6.56) xi 7→ 1 +Xi

extends to a unique homomorphism

(6.57) µ : F → U (Φ) .

Theorem 6.14. µ is injective.

This is called the Magnus embedding.

Proof. Let x ∈ F (x 6= 1) be represented by a reduced word

(6.58) xn1
ρ1 . . . x

nk
ρk

in {xi} for k ≥ 1, ni ∈ Z \ {0}, and ρi+1 6= ρi for 1 ≤ i < k.
Then

(6.59) µ (x) =

k∏
i=1

(1 +Xρi)
ni .

Next

(6.60) (1 +Xi)
n ≡ 1 + nXi (mod I2)

for n ∈ Z.
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Now we have

µ (x) =1 + terms of deg < k(6.61)

+

k∏
i=1

niXpi︸ ︷︷ ︸
deg=k, and length k

(6.62)

+ terms of degree k, length < k + terms of deg > k .(6.63)

The point is that this is the unique term of degree k and length k, so µ (x) 6= 1. �

Lemma 6.15. Let g1, . . . , gm ∈ I, (i.e. deg > 0, i.e. no constant term). Then Xi 7→ gi for
1 ≤ i ≤ m defines a homomorphism Φ→ Φ.

Proof. Let f (X) ∈ Φ. Then the assignment of this to f
(
g
)

is well-defined since any
monomial in X appears only finitely many times in g. �

Note that it is important that gi ∈ I. For example, substituting 1 +X for X in

(6.64) 1 +X +X2 + . . .

makes no sense.

Corollary 6.16. If g ∈ I then 1 + g ∈ U (Φ).

This follows formally from Lemma 6.15, but explicitly

(6.65) (1 + g)
−1

= 1− g + g2 − . . .
is well-defined.

Consider the subgroup

(6.66) U (Φ) > U(n) =
{

1 + f
∣∣ f ∈ In+1

}
= {1 + g | ≥ f > n}

for n ≥ 0.

Lemma 6.17. µ (F (n)) < U(n).

Proof. First we show that µ (Fn) < U(n).
Proceed by induction on n. For n = 0, F0 = F .

(6.67) U(0) = {1 + f |deg f > 0} ,
and

(6.68) xi 7→ 1 +Xi ∈ U()

so

(6.69) µ (F0) < U(0) .

Assume this is true for n− 1 (n ≥ 1). By definition

(6.70) Fn = [Fn−1, F ]

is generated by [x, y] for x ∈ Fn−1 and y ∈ F . So it is enough to show that

(6.71) µ ([x, y]) ∈ U(n) .

By the inductive hypothesis we have

(6.72) µ (x) ∈ U(n−1) .
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So

(6.73) µ (x) = 1 + f

for f ∈ In. Therefore

(6.74) µ
(
x−1

)
= µ (x)

−1
= (1 + f)

−1
= 1− f + . . . ≡ (!− f) (mod In+1) .

Then for y we have

(6.75) µ (y) = 1 + g

and

(6.76) µ
(
y−1

)
= 1 + h

for g, h ∈ I.
Then

µ ([x, y]) = µ
(
x−1y−1xy

)
(6.77)

= (1− f) (1 + h) (1 + f) (1 + g) (mod In+1)(6.78)

= 1− f + h+ f + g + hg + terms containing f, g or h︸ ︷︷ ︸
deg>deg f≥n

(6.79)

≡ 1 + h+ g + hg (mod In+1)(6.80)

= µ
(
y−1

)
µ (y)(6.81)

= µ
(
y−1y

)
= 1 .(6.82)

So the upshot is that

(6.83) µ ([x, y]) ≡ 1 (mod In+1) ,

i.e. µ [x, y] ∈ U(n), so µ (Fn) ⊂ U(n).

Now suppose z ∈ F and zk ∈ Fn, for some k 6= 0. So z ∈ F (n). Write µ (z) = 1 + f .
Then

(6.84) µ
(
zk
)

= 1 + kf + . . . ∈ U(n) .

Therefore deg kf > n, so deg f > n, so µ (z) ∈ U(n), so µ (F (n)) ⊂ U(n). �

Since

(6.85)

∞⋂
n=0

In = {0}

we have that

(6.86)

∞⋂
n=0

U(n) = {1} .

Therefore since µ is injective we have the following.

Corollary 6.18.

(6.87)

∞⋂
n=0

F (n) = {1} .

I.e. F is residually torsion-free nilpotent.
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Proof of Theorem 6.11. Let F be any free group. Then

(6.88) F = ∗
Λ
Z .

For g ∈ F , g 6= 1, we have

(6.89) g ∈ ∗
Λ0

Z = F0

for some finite Λ0 ⊂ Λ. F has quotient F0, and F0 is residually torsion-free nilpotent. �

3. Right-angled Artin groups

Let Γ be a finite graph with no loops and no double edges, with vertices x1, . . . , xm.
The corresponding right-angled Artin group (RAAG) A (Γ) has presentation

(6.90) A (Γ) = 〈x1, . . . , xm |xi ↔ xj ⇐⇒ they are joined by an edge in Γ〉 .

Remark 6.3. A (Γ) is sometimes called a graph group, or free partially commutative
group. They satisfy the obvious universal property.

Example 6.5. If Γ is the complete graph on m vertices, e.g.

(6.91)

then A (Γ) = Zm.

Example 6.6. If Γ has no edges, e.g.

(6.92)

then A (Γ) is the free group of rank m.
More generally, if Γ = Γ1 q Γ2, then

(6.93) A (Γ) = A (Γ1) ∗A (Γ2) .

Example 6.7. Consider the graph:

(6.94) Γ =

a c

d b

.

Then

(6.95) A (Γ) ∼= F (a, b)× F (c, d) .

More generally, let

(6.96) Γ = Γ1 + Γ2

be the join of Γ1 and Γ2. This graph has vertices

(6.97) V (Γ1 + Γ2) = V (Γ1)q (Γ2)
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and the same edges, along with edges joining each vertex of Γ1 to each vertex of Γ2. Then

(6.98) A (Γ) ∼= A (Γ1)×A (Γ2) .

Theorem 6.19. RAAG’s are residually torsion-free nilpotent.

Corollary 6.20. RAAG’s are BO.

Theorem (Agol). Let M be a closed hyperbolic 3-manifold. Then M has a finite-sheeted

cover M̃ such that π1

(
M̃
)

embeds in a RAAG.

Corollary. Let M be a closed hyperbolic 3-manifold. Then π1 (M) is virtually BO.

Lecture 25; April
28, 2020

Proof of Theorem 6.19. This is a minor modification of the proof of Corollary 6.18.
Replace Φ by Φ (Γ), the ring of formal power series with Z coefficients in X1, . . . , Xm where
Xi and Xj commute if and only if Γ has an edge joining the corresponding vertices xi and
xj .

Given a nontrivial monomial Q ∈ Φ (Γ), write it as:

(6.99) Q =

k∏
i=1

Xni
ρi

for k ≥ 1, ni ≥ 1, and pi+1 6= pi for 1 ≤ i < k. Note Q may have many such expressions,
but they all have the same degree, namely

(6.100) degQ =

k∑
i=1

ni

so this is well-defined. Recall we defined the length to be k, but now this varies with the
possible expressions. So we define the length of Q, written |Q| to be:

(6.101) |Q| = min {k |Q has an expression as above} .
Define

(6.102) µ : A (Γ)→ Φ (Γ)

by sending

(6.103) µ (xi) = 1 +Xi

as before. The key point is the following.

Theorem 6.21. µ is injective.

Proof. Let x ∈ A (Γ) \ {1}. Then x can be written

(6.104) x =
∏

xniρi

for k ≥ 1, and ni ∈ Z \ {0} where ρi+1 6= ρi for 1 ≤ i < k. Choose such an expression with
k minimal. Then note that, as before, we can write

µ (x) =

k∏
i=1

(1 +Xρi)
ni(6.105)

= 1 + . . .︸︷︷︸
deg<k

+

k∏
i=1

niXρi + . . .(6.106)
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where, in particular, all other terms of degree k have length < k, so

(6.107)

k∏
i=1

niXρi =

k∏
i=1

niQ

is the only possible term of degree k with length k.

Claim 6.1. |Q| = k.

If not, then |Q| can be reduced by a sequence of operation of the following form.

(i) Replace Xr
αX

s
β with Xs

βX
r
α when Xα and Xβ commute.

(ii) Replace Xr
αX

s
α by Xr+s

α .

But if we can reduce Q using these, then we can reduce

(6.108)

k∏
i=1

xniρi

in the same way. �

The rest of the argument is the same. �

4. Surface groups

Now we consider groups given as the fundamental group of a closed orientable surface
of genus ≥ 1. These residually free, so residually torsion-free nilpotent, so BO.

Let P be a property of a group. A group G is fully residually P if for all g1, . . . , gn ∈
G \ {1} there is an epimorphism

(6.109) ϕ : G→ H

such that H has property P, and

(6.110) ϕ (gi) 6= 1

for 1 ≤ i ≤ n. For n = 1 this is equivalent to the definition of residually P.

Exercise 6.3. If P is closed under taking subgroups and finite direct products then G
is residually P if and only if G is fully residually P.

Example 6.8. The property of being finite is closed under subgroups and finite direct
products, so fully residually finite is the same as residually finite.

As it turns out, residually free is not the same as fully residually free. To see this we
need a definition and a few lemmas.

Definition 6.1. G is commutative transitive (CT) if and only if for all a, b, c ∈ G, b 6=1,
then a↔ b, b↔ c implies a↔ c.

Lemma 6.22. Free groups are CT.

Proof. Suppose F is a free group. Let a, b, c ∈ F with b 6= 1. We know a ↔ b if and
only if 〈a, b〉 is abelian. But a subgroup of a free group is free, so 〈a, b〉 is abelian if and only
if 〈a, b〉 ∼= Z. But this is true if and only if there is d ∈ F such that a = dm and b = dn for
n 6= 0.

Similarly, b ↔ c if and only if b = ek and c = el for some e ∈ F and k 6= 0. Therefore
dm = ek for e, d 6= 1 and m, k 6= 0. Therefore 〈d, e〉 is not free of rank 2, so it must be free
of rank 1, so there is some f such that d = fr and e = fs.

Therefore a = frm, and c = fsl, so a↔ c. �
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Corollary 6.23. Fully residually free implies CT.

Proof. Let G be fully residually free, and a, b, c ∈ G such that b 6= 1. Let a ↔ b,
b↔ c, and a 6↔ c. I.e. [a, c] 6= 1. Therefore there exists ϕ : G→ F , for F a free group, such
that

ϕ (b) 6= 1 ϕ ([a, c]) 6= 1 .(6.111)

But

(6.112) ϕ ([a, b]) = ϕ ([b, c]) = 1 .

Therefore

ϕ (a)↔ ϕ (b) ϕ (b)↔ ϕ (c) ϕ (b) 6= 1(6.113)

but

(6.114) ϕ (a) 6↔ ϕ (c)

so we have a contradiction. �

Clearly A and B residually P implies A×B is residually P. So

(6.115) F2 × Z = 〈a, c〉 × 〈b〉

is residually free. But a ↔ b, b ↔ c, and c 6↔ a. For F2 × Z is not CT, and therefore not
fully residually free.

Note that F2 × Z is a RAAG:

(6.116) F2 × Z = A

 a b c
 .

One can show that π1 of a closed orientable surface of genus ≥ 1 is fully residually free,
and therefore BO.

Remark 6.4. Consider a non-orientable surface group:

(6.117) π1

(
#nRP2

)
.

For n ≥ 4, this is fully residually free, and therefore BO. For n = 3, this is not even residually
free, but it is residually torsion-free nilpotent. So it is still BO. But recall π1 of the Klein
bottle is not BO, but it is LO, whereas π1

(
RP2

)
is not even LO.

4.1. Logic. Let G be a group.

Question 5. Which first-order sentences are true in G?

In particular, we let sentences include the following logical connectives and group oper-
ations

∀ , ∃ , ∧ , ∨ , ( =⇒ ) ,(6.118)

∼ , · , (−)
−1

, 1 , = .(6.119)

Example 6.9. The sentence:

(6.120) ∀x, y (xy = yx)

holds in G iff G is abelian.
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We can say that G1 is elementarily equivalent to G2 if and only if the set of first-order
sentences true in G1 is the same as the set of first-order sentences true in G2.

If we restrict to sentences of the form:

(6.121) ∀xϕ (x)

then two groups are called universally equivalent.

Theorem 6.24. Let G be finitely generated non-abelian. G is equivalent to a non-abelian
free group if and only if G is fully residually free.

Question 6 (Tarski). If m,n > 1, is Fm elementarily equivalent to Fn?

Solution (Sela [S1]). Yes.

He actually characterized the groups G that are elementarily equivalent to Free grups.

Example 6.10. π1 of a closed orientable surface of genus ≥ 2.



CHAPTER 7

L-spaces

1. Heegaard splittings

Let g ≥ 0. A genus g handlebody V is the 3-manifold obtained by attached g 1-handles
to B3 (the 0-handle). See fig. 1.

Then

(1) V depends only on g (up to homeomorphism), and
(2) ∂V is a closed orientable surface of genus g.

Note that the handle structure of V is not unique.
A complete disk system (CDS) D for V is a disjoint union of properly embedded disks

in V such that V |D ∼= B3.

Remark 7.1. (1) A CDS corresponds to cores of 1-handles constituting a 1-handle
decomposition as above. So

(7.1) D =

g∐
i=0

Di .

(2) V is irreducible.

Exercise 7.1. Show this.

Hence D is determined up to isotopy by ∂D.

Let F be a closed orientable surface of genus g. A complete curve system (CCS) for F
is

(7.2) α = qgi=1αi

Figure 1. A genus 3 handlebody.

73
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where αi is an scc in F such that

(7.3) {[αi] | 1 ≤ i ≤ g}
is independent in H1 (F ).

Remark 7.2. (1) α is a CCS if and only if

(7.4) F |α ∼= S2 \ {2g points} .
(2) If α and α are CCS’s for F , then there is an orientation preserving homeomorphism

h : F → F such that h (α) = α′

Exercise 7.2. Show this.

A CCS α determines a handlebody V with ∂V = F . In particular

(7.5) V = (F × I) ∪ (2-handles attached along α) ∪B3 .

The cores of the 2-handles are a CDS for V . As it turns out, V is uniquely determined
by α (up to a homeomorphism isotopic to the identity).

We say α is a CCS for V . Let α be a CCS for F . Let γ ⊂ F be an arc such that
γ ∩ α = ∂γ with one endpoint in αi and one in αj such that i 6= j. Consider a band
neighborhood γ × [−1, 1] of γ. Now define

(7.6) α′i = (αi ∪ αj) \ (∂γ × [−1, 1]) ∪ (γ × [−1, 1])

pushed slightly off αj .
The collection

(7.7) α′ = (α \ αi) ∪ {α′i}
is a CCS for F .

Exercise 7.3. Show this.

We say α′ is obtained from α by a band move.
Let (V,D) be a handlebody with a CDS determined by (F,α). Then α′ bounds a CDS

D′ for V , where

(7.8) D′ = (D \Di) ∪ {D′i}
where D′i is obtained by joining Di ×Dj by a tunnel. We say that D′ is obtained from D
by a band move.

Theorem. Any two CCS’s (or CDS’s) for a given handlebody are related by a sequence
of band moves (and isotopies).

Lecture 26; April
29, 2020

Remark 7.3. Band moves on CDS’s correspond to handle slides on the corresponding
1-handles.

A Heegaard splitting Σ of a closed (oriented) 3-manifold M is (V,W ;F ) where V and
W are genus g handlebodies (for g ≥ 0) such that M = V ∪W , and

(7.9) F = V ∩W = ∂V = ∂W .

Say Σ = Σ′ if there is an isotopy of M taking V to V ′.

Theorem. Every close three-manifold has a Heegaard splitting.
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V

W

F

B

H

Figure 2. Stabilization corresponds to choosing a 3-ball B (such that B∩
F ∼= B2) and then attached the standard 1-handle H.

The proof follows easily from the (very hard) theorem that 3-manifolds are triangulable,
which was shown by Moise in [M5].

If Σ is a genus g Heegaard splitting of M , then we can get a Heegaard splitting Σ′ of
genus g + 1 by stabilization. Choose a 3-ball in M such that

(7.10) (B,B ∩ F ) ∼=
(
B3, B2

)
.

Now inside this we take a standard handle H, and then we just define

V ′ = V ∪H W ′ = W \H .(7.11)

See fig. 2. Another way of saying this, is that we are taking the connect sum of the original
splitting with the genus 1 splitting of S3. As it turns out, Σ′ is uniquely determined by Σ.

Theorem (Reidemeister [R2], Singer [S3], Craggs [C2]). Any two Heegaard splittings
of M of a given 3-manifold M become equivalent (i.e. isotopic) after stabilizing each some
number of times.

Warning 7.1. There are examples where both need to be stabilized, it is not the case
that only one needs to be stabilized.

Let Σ = (V,W ;F ) be a Heegaard splitting of M . A Heegaard diagram of Σ (of M) is

(7.12) D = (F ;α,β)

where α and β are CCS’s for V and W which intersect transversely. So D determines Σ
and hence M .

Example 7.1. Consider the genus 1 splitting of S3 in fig. 3. This has Heegaard diagram
in fig. 3.

Example 7.2. The lens space L (5, 2) has a genus 1 splitting with Heegaard diagram
in fig. 4.

Example 7.3. If Σ has a Heegaard diagram D, then stabilization gives the stabilization
D′ in fig. 5.

Example 7.4. The Poincaré homology sphere, Σ (2, 3, 5), has Heegard diagram as in
fig. 6.

The theorems above combine to give us the following.
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α

β

Figure 3. Genus 1 splitting of S3 with Heegaard diagram given by the
two curves pictured. α bounds a disk in the solid torus pictured, and β
bounds a disk in the complementary solid torus in S3.

α

β

Figure 4. Heegaard diagram for L (5, 2).

. . .

αg+1

βg+1

Figure 5. The surface F has some diagram D (not shown) and when we
stabilize to get our stabilized surface F ′, the new diagram D has the two
pictured curves added to α and β.
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Figure 6. Name

Theorem. Any two Heegaard diagrams of a given 3-manifold are equivalent under the
equivalence relation generated by (isotopy and)

(1) band moves on α or β, and
(2) stabilization.

Remark 7.4. So if we want to define invariants of manifolds using this description of
3-manifolds, we will get invariants which detect manifolds up to this equivalence relation.
In hindsight this explains quantum invariants like the ReshetikhinTuraev invariant.



2. HEEGAARD FLOER HOMOLOGY 78

2. Heegaard Floer homology

This was introduced by Ozsváth and Szabó [OS2].
Let D = (F ;α,β) be a genus g Heegaard diagram of M . Now we can consider the

symmetric product

(7.13) Symg (F ) = F g/Sg

where Sg is the symmetric group permuting the factors. As it turns out, this is a smooth
2g-manifold.

Now define

Tα =

g∏
i=1

αi = {x = (x1, . . . , xg) |xi ∈ αi, 1 ≤ i ≤ g} ⊂ Symg F(7.14)

Tβ =

g∏
i=1

βi = {x = {x1, . . . , xg} |xi ∈ βi, 1 ≤ i ≤ g} ⊂ Symg F .(7.15)

These are both just homeomorphic to

(7.16) T g =

g∏
i=1

S1 .

The intersection is

(7.17) Tα ∩ Tβ =
{
x = {x1, . . . , xg}

∣∣xi ∈ αi ∩ βσ(i)

}
for some permutation σ ∈ Sg. The idea is to define a chain complex

(7.18) ĈF = ĈF (D)

to be the F2 vector space with basis given by these intersection points Tα ∩ Tβ .
An orientation on M gives an orientation on V , which gives an orientation on F , which

gives an orientation on Symg F . Now choosing an orientation on α and β gives us orienta-
tions on Tα and Tβ . For x ∈ α∩β, let ε (x) be the sign of the intersection. For x ∈ Tα∩Tβ ,
let ε (x) be the sign of the intersection. Note that if

(7.19) x ⊂
{
xi
∣∣ 1 ≤ i ≤ g ∣∣xi ∈ αi ∩ βσ(i)

}
then

(7.20) ε (x) = sign (σ)

g∏
i=1

ε (xi) .

So ĈF is Z/2-graded (relatively since it depends on the orientations of α and β.) So this
decomposes as:

(7.21) ĈF = ĈF+ ⊕ ĈF−

where ĈF± is the F2 vector space on

(7.22) {x ∈ Tα ∩ Tβ | ε (x) = ±} .
Therefore the algebraic intersection number is:

(7.23) Tα · Tβ = dim ĈF+ − dim ĈF− .

Now let A be the g× g matrix [aij ] where the coefficients are the algebraic intersection
numbers:

(7.24) aij = αi · αj .
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Lemma 7.1. A is a presentation matrix for H1 (X;Z).

Proof. H1 (W ) ∼= Zg where the basis corresponds to the cores of the 1-handles, which
are in correspondence with the co-cores of the 1-handles, i.e. the CDS determined by β.
Then M is

(7.25) M = W ∪ (2− handles attached along α)︸ ︷︷ ︸
V

∪B3 .

Then with respect to the basis above,

(7.26) [αi] = (ai1 , . . . , aig) ∈ H1 (W )

so by Mayer-Vietoris, A is a presentation matrix for H1 (M), i.e. the columns are the
generators and the rows are the relations. �

Lemma 7.2. Tα · Tβ = detA.

Corollary 7.3.
∣∣∣χ(ĈF

)∣∣∣ = |H1 (M ;Z)|.

Proof of Corollary 7.3. By definition,

(7.27)
∣∣∣χ(ĈF

)∣∣∣ =
∣∣∣dim ĈF+ − dim ĈF−

∣∣∣ = |Tα · Tβ |

and by Lemma 7.2, this is the same as |det (A)|, which by Lemma 7.1 is |H1 (M ;Z)|. �

Proof of Lemma 7.2. By definition

(7.28) detA =
∑
σ∈Sg

sign (σ)

g∏
i=1

aiσ(i)

and in particular,

(7.29) aiσ(i) = αiβσ(i) =
∑

x∈αi∩βσ(i)

ε (x) .

Therefore

sign (σ)

g∏
i=1

aiσ(i) = sign (σ)

g∏
i=1

 ∑
x∈αi∩βσ(i)

ε (x)

(7.30)

= sign (σ)
∑

xi∈αi∩βσ(i)
1≤i≤g

(
g∏
i=1

ε (xi)

)
(7.31)

=
∑

x={xi}
xi∈αi∩βσ(i)

1≤i≤g

ε (x)(7.32)

=
∑

x=Tα∩Tβ

ε (x)(7.33)

= Tα · Tβ .(7.34)

�
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α1 α2

β1

β2

x1

x2

x3

y2

y1

Figure 7. Heegaard diagram for the lens space L (3, 1). The two β curves
are in red and green. The two α curves are in blue.

Example 7.5. Consider the Heegaard diagram in fig. 7. The corresponding matrix A
is:

A =

[
ε (x1) + ε (x2) ε (x3)

ε (y1) ε (y2)

]
(7.35)

=

(
2 1
1 −1

)
(7.36)

so

(7.37) det (A) = −3

and

(7.38) H1 (M) ∼= Z/3 .

The basis for ĈF is given by

v1 = {x1, y2} v2 = {x2, y2} v3 = {x3, y1}(7.39)

where v1 and v2 correspond to σ = id, and v3 corresponds to σ = (12). Then when we look
at the signs of the points, we have that the xi’s and y1 are +, and y2 is −, so we have

(7.40) ε (v1) = ε (v2) = ε (v3) = − .

Therefore

dim ĈF+ = 0 dim ĈF− = 3(7.41)

This is the Lens space L (3, 1). This phenomenon of having ĈF concentrated in one graded
part is the definition of an L-space.

Lecture 27; May 5,
2020

Since we want this to be a chain complex, there better be a differential. To define this
we need the extra data of a complex structure J on F , and a base point

(7.42) z ∈ F \ (α ∪α) .
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Then we get a differential

(7.43) ∂ : ĈF± → ĈFmp

which squares to zero, so we get a well-define homology

(7.44) ĤF = ĤF⊕ ĤF− .

Theorem (Ozsváth-Szabó [OS2]). ĤF (D; z; J) is independent of the choices J and z;
invariant under band moves on α and β; and stabilization of D. Hence it depends only on
the oriented 3-manifold M .

Remark 7.5. There are other versions of Heegaard Floer homology such as HF+, HF−,

and HF∞. We only deal with the “hat” version ĤF.

Theorem 7.4. dim ĤF (M) ≥ |H1 (M ;Z)|.

Proof.

dim ĤF (M) = dim ĤF+ (M) + dim ĤF− (M)(7.45)

≥
∣∣∣dim ĤF+ (M)− dim ĤF− (M)

∣∣∣(7.46)

=
∣∣∣χ(ĤF (M)

)∣∣∣(7.47)

=
∣∣∣χ(ĈF (D)

)∣∣∣(7.48)

= |H1 (M ;Z)|(7.49)

where the last equality follows from Corollary 7.3. �

Definition 7.1. A QHS M is an L-space if and only if the inequality in Theorem 7.4
is an equality.

Example 7.6. S3 and all Lens spaces are L-spaces.

In fact, these examples fulfill a strictly stronger definition of a strong L-space. This

means ĤF is completely isolated in either the + or − part of the grading. The idea is that
these examples have a genus 1 Heegaard diagram such that all x ∈ α ∩ β have the same
sign. So, say we are considering L (p, q), then

dim ĈF+ = p dim ĈF− = 0(7.50)

so indeed

dim ĤF+ = p dim ĤF− = 0 .(7.51)

Remark 7.6. Although ĤF (M) depends on the orientation of M , when we change it,
we get an isomorphism (as F2 vector spaces):

(7.52) ĤF (M) ∼= ĤF (−M) .

Therefore M is an L-space iff −M is.

Remark 7.7. There is a kind of Künneth formula:

(7.53) ĤF (M1#M2) ∼= ĤF (M1)⊗ ĤF (M2) ,

so M1 and M2 are L-spaces iff M1#M2 is.

Remark 7.8. π1 (M) finite implies M is an L-space by Perelman.
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α

β γ

Figure 8. The three curves α, β, γ such that the complexes ĤF of the
associated Dehn fillings of X sit in an exact triangle.

2.1. Dehn filling exact triangle. Let X be a compact 3-manifold with ∂X ∼= T 2.
Let α be an essential simple closed curve (sometimes called a slope) on ∂X. Then the
α-Dehn filling on X is

(7.54) X (α) = X ∪∂ S1 ×D2

where α is identified with pt× ∂D2.
Now we have an exact triangle as follows. Let X be as above. Then let

(7.55) α, β, γ ⊂ ∂X
be simple closed curves which can be oriented such that

(7.56) α · β = β · γ = γ · α = −1 .

See fig. 8.

Theorem (Ozsváth-Szabó). There is an exact triangle

(7.57)

ĤF (X (α))

ĤF (X (γ)) ĤF (X (β))

where the maps preserve the grading.

Remark 7.9. These maps come from 4-dimensional cobordisms. E.g. the map between

(7.58) ĤF (X (α))→ ĤF (X (β))

is given by a certain 4-manifolds which has two boundary components, one homeomorphic
to X (α), and the other homeomorphic to X (β).

X (α) is a QHS, so X is a rational homology copy of S1 ×D2, i.e.

(7.59) H1 (X;Q) = Q .
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So

(7.60) H1 (X;Z) ∼= Z⊕G
for G a finite abelian group. Then duality implies that

(7.61) ker (H1 (∂X;Q)→ H1 (X;Q)) ∼= Q .

Let λ ⊂ ∂X be a slope, i.e. an embedded simple closed curve such that

(7.62) [λ] = 0 ∈ H1 (X;Q) .

This is unique up to orientation. λ is the Q-longitude of X. Let µ ⊂ ∂X be such that

(7.63) |µ ∩ λ| = 1 ;

oriented such that µ · λ = 1. Then

(7.64) [µ] 6= 0 ∈ H1 (X;Q)

so

λ 7→ (0, g) ∈ Z⊕G µ 7→ (n, h) ∈ Z⊕G(7.65)

where n ∈ Z (WLOG n > 0) and g, h ∈ G.
Let α be any space in ∂X. Then we can orient it to be homologous to

(7.66) α ∼ aµ + a′λ

in ∂X (where (a, a′) = 1).

Lemma 7.5. |H1 (X (α) ;Z)| = |a|n |G|. In particular, n |G| only depends on X, so µ is
well-defined up to adding multiples of λ.

Proof.

(7.67) H1 (X (α) ;Z) ∼= (Z⊕G) / ((an, ah) + (0, a′g)) .

We can think of this as having presentation matrix:

(7.68) B =


an ∗ · · · ∗
0
· · · A
0


where A is a presentation matrix for G. So

(7.69) |H1 (χ (α) ;Z)| = |detB| = |a|n |detA| = |a|n |G| .
�

Corollary 7.6. Let X, α, β, γ be as in the exact triangle. Then up to cyclically permuting
α, β, and γ,

(7.70) |H1 (X (γ))| = |H1 (X (α))|+ |H1 (χ (β))| .

Proof. We can assume H1 (X;Q) = Q. Now orient α, β, γ such that

(7.71) α · β = β · γ = γ · α = −1 .

Then

(7.72) α+ β + γ = 0 ∈ H1 (∂X)



2. HEEGAARD FLOER HOMOLOGY 84

since

(α+ β + γ) · α = 0(7.73)

(α+ β + γ) · β = 0 .(7.74)

Let µ and λ be as above. Then

α = aµ+ a′λ ∈ H1 (∂X)β = bµ+ b′λ ∈ H1 (∂X) γ = cµ+ c′λ ∈ H1 (∂X)(7.75)

so after possible cyclically permuting these,

(7.76) |c| = |a|+ absb

and the result follows from Lemma 7.5 �

Theorem 7.7. Let X, α, β, and γ be as in Corollary 7.6. If X (α) and X (β) are L
spaces, then X (γ) is an L-space.

Proof. If X (α) is an L-space, then X (α) is a QHS, so H1 (X;Q) ∼= Q. Then the
exact triangle implies

(7.77) dim ĤF (X (γ)) ≤ dim ĤF (X (α)) + dim ĤF (X (β)) .

So by Theorem 7.4,

|H1 (X (γ))| ≤ dim ĤF (X (γ))(7.78)

≤ dim ĤF (X (α)) + dim ĤF (X (α))(7.79)

= |H1 (X (α))|+ |H1 (X (β))|(7.80)

= |H1 (X (γ))|(7.81)

where the last equality follows from Corollary 7.6. Therefore

(7.82) dim ĤF (X (γ)) = |H1 (X (γ))|

so it is an L-space. �

Suppose X (α) and X (β) are L-spaces where

(7.83) |α ∩ β| = 1 .

Orient α, β so that

α = aµ+ a′λ(7.84)

β = bµ+ b′λ(7.85)

with a, b > 0. Therefore

(7.86) α+ β = (a+ b)µ+ (a′ + b′)λ .

So by the proof of Corollary 7.6 implies

(7.87) H1 (X (α+ β)) = |H1 (X (α))|+ |H1 (X (β))| .

In this situation, we say (α, β, α+ β) is a triad.

Lemma 7.8. If (α, β, α+ β) is a triad for X, then for all p, q ≥ 0 ((p, q) = 1),

(7.88) X (pα+ qβ)

is an L-space.
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Figure 9. The (−2, 3, 7) pretzel knot.

Proof. Induct on p + q. For p + q = 1 this is the hypothesis. For p + q = 2, this is
Theorem 7.7. Now suppose p+ q ≥ 3. Then there are integers r, s such that 0 ≤ r < p, and
0 ≤ s < q such that

(7.89) ps− qr = ±1

then consider

(7.90) (rα+ sβ, (p− r)α+ (q − s)β, pα+ qβ)

and this is a triad. �

Let K be a knot in S3. If K (m) is an L-space for some m ∈ ZZ, m > 0, then K (r) is
an L-space for all r ≥ m, r ∈ Q.

Example 7.7. Consider the (p, q) torus knot Tp,q. Then the pq − 1 Dehn filling on the
exterior, written: Tp,q (pq − 1) is a lens space. Therefore it is an L-space, so Tp,q (r) is an
L-space for all r.

Example 7.8. T2,3 (1) = Σ (2, 3, 5), is the Poincaré homology sphere. Therefore T2,3 (r)
is an L-space for any r ≥ 1.

Example 7.9. Let K be the (−2, 3, 7) pretzel knot as in fig. 9. Then K (18) = L (18, 5),
and K (17) has finite π1. Therefore K (r) is an L-space for all r ≥ 17.

For a knot K ⊂ S3, if there is some r ∈ Q such that K (r) is an L-space, then K is an
L-space knot.

Theorem (Ozsváth-Szabó [OS1,OS3]). Let K be a knot of genus g. If K is an L-space
knot, then for all s ≥ 2g − 1 K (S) is an L-space.

So we saw by sort of brute force that this was true for the pretzel knot (−2, 3, 7) and
r ≥ 17, but this tells us that it is in fact true for r ≥ 9.

Theorem (Ozsváth-Szabó [OS1], Kazez-Roberts [KR], Bowden [B1]). Let M be a
closed 3-manifold. If M has a coorientable taut foliation, then M is not an L-space.
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Somehow having a coorientable taut foliation generates so much Heegaard Floer homol-
ogy, that it can’t all fit in one of the graded pieces.

Corollary. Let M be a SFS QHS with π1 (M) LO. Then M is not an L-space.

For suchM , π1 (M) LO impliesM has a coorientable horizontal foliation by Theorem 5.8

Corollary 7.9. Let M be a SHS ZHS, not homeomorphic to S3 or Σ (2, 3, 5). Then M is
not an L-space.

Remark 7.10. The only known prime ZHSL-spaces areS3 and Σ (2, 3, 5). At this point,
the only case left is M a hyperbolic ZHS.

Now for M a SFS QHS, we have that the base surface F is either homeomorphic to S2

or RP2. Recall from Theorem 4.12 that if M is a SFS with RP2 base surface then π1 (M) is
not LO.

Theorem 7.10. If M is a SFS QHS with base surface RP2, then M is an L-space.

Lecture 28; May 7,
2020

Proof sketch. M is of type RP2 (a1, . . . , an) for ai ≥ 2 for n ≥ 2, and a1 ≥ 1 if n = 1.
Now induct on n.

For n = 1, M is either RP3#RP3 (which is the case with no singular fibers: this is
a circle bundle over RP2), a lens space, or a prism manifold of type S2 (2, 2, r) for r ≥ 2.
These are all L-spaces.

Now let n ≥ 2. This is RP2 (a1, . . . , an). Let C be the exceptional fiber of multiplicity
an, and

(7.91) X = M \N (C) .

Then we can apply Lemma 7.8 to fillings on X.

Exercise 7.4. Fill in the details.

�

Theorem (Lisca-Stipsicz [LS]). Let M be a SFS QHS with base surface S2. If M does
not have a coorientable taut foliation then M is an L-space.

Theorem 7.11. Let M be a SFS QHS. Then the following are equivalent:

(1) π1 (M) is LO,
(2) M has a coorientable taut foliation, and
(3) M is not an L-space.

Proof. (1) =⇒ (2): This follows from Theorem 5.8.
(2) =⇒ (3): This is true for all manifolds by Ozsváth-Szabó [OS1], Kazez-Roberts

[KR], Bowden [B1].
(3) =⇒ (1): If the base is RP2, this follows from Theorem 7.10. If the base is S2, this

follows from Lisca-Stipsicz [LS]. �

Conjecture 5. Let M be a closed prime 3-manifold. Then (1), (2), and (3) are
equivalent.

This is now known for graph-manifolds. These are somehow the next most complicate
case after Theorem 7.11. The LO part is due to Boyer-Clay, the L-space part is due to
Hanselman-Rasmussen-Rasmussen-Watson [HRRW].
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Remark 7.11. These three properties are three very different aspects of 3-manifold
topology. Being an L-space has something to do with analysis, since this whole Heegaard
Floer story has to do with holomorphic curves. The other two are more algebraic and
topological. So this relates these three things at a structural level.

3. Double branched covers

Let L be a k-component link in S3. Write

(7.92) X = S3 \N (L) .

Then

(7.93) H1 (X) ∼= Zk

is generated by the meridians of the components of L. There exists a canonical epimorphism

(7.94) π1 (M)→ Z/2

where µi 7→ 1 for all i.
Then we get a 2-fold cover p : X2 → X. Write the preimages as µ̃i = p−1 (µi). Now

define Σ (L) to be the Dehn filling:

(7.95) Σ (L) = X2 (µ̃1, . . . , µ̃k) .

Then p extends to a branched covering projection

(7.96) Σ (L)→ S3

which is the double branched cover of L.

Example 7.10. Σ (unknot) = S3.

Example 7.11. The double branched cover of the k-component unlink is

(7.97) #k−1S
1 × S2 .

More generally,

(7.98) Σ (L1 q L2) ' Σ (L1) #Σ (L2) #S1 × S2 .

Example 7.12.

(7.99) Σ


 = RP3 .

Example 7.13. A 2-bridge link Lp/q has double-branched cover:

(7.100) Σ
(
Lp/q

)
= L (p, q) .

Example 7.14. For p, q odd, the torus knot has double branched cover given by the
ZHS:

(7.101) Σ (Tp,q) = Σ (2, p, q) .

Example 7.15. Σ (K) ∼= S3 if and only if K is the unknot. This is the Z/2 version of
the Smith conjecture.

2-bridge links are alternating. The double branched cover of these links are lens spaces.
We want to show the following more general fact.
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τ0 τ0 τ∞

Figure 10. Three tangles τ , τ0, and τ∞ such that when they are removed
from L, L0, and L∞ they are all the same tangle σ.

Theorem 7.12 (Ozsváth-Szabó). Let L be a non-split alternating link. Then Σ (L) is
an L-space.

Non-split just means it is not equal to L1 q L2 for L1, L2 6= ∅.
A surgery triple is X (α), X (β), X (γ) as in the exact triangle theorem for ĤF. Let L,

L0, L∞ be links with diagrams that differ only as in fig. 10.

Lemma 7.13. Σ (L), Σ (L0), Σ (L∞) is a surgery triple.

Proof. A tangle is a pair
(
B3, A

)
, where A is a properly embedded 1-manifold. Now

write τ , τ0, and τ∞ for the three tangles in fig. 10. By definition,(
S3, L

)
= σ ∪ τ(7.102) (

S3, L0

)
= σ ∪ τ0(7.103) (

S3, L∞
)

= σ ∪ τ∞ .(7.104)

Then the double-branched covers are:

Σ (L) = Σ (σ) ∪ Σ (τ) = X ∪ Σ (τ)(7.105)

Σ (L0) = Σ (σ) ∪ Σ (τ0) = X ∪ Σ (τ0)(7.106)

Σ (L∞) = Σ (σ) ∪ Σ (τ∞) = X ∪ Σ (τ∞) .(7.107)

Now

(7.108) Σ (τ) ' Σ (τ0) ∼= Σ (τ∞) ∼= S1 ×D2

with meridians µ, µ0, and µ∞ such that

(7.109) µ · µ0 = µ0 · µ∞ = µ∞ · µ = −1 .

�

Lemma 7.14. Let L, L0, L∞ be as above with D alternating. Then

(7.110) |H1 (Σ (L))| = |H1 (Σ (L0)) +H1 (Σ (∞))| .

To prove Lemma 7.14 we introduce the Goeritz matrix. Let D be a diagram of a link L.
Then consider a checkerboard shading as in fig. 11. For each crossing c, define η (c) = ±1
as in fig. 12. Now number the black regions:

(7.111) B0, B1, . . . , Bn .

Define an (n+ 1)× (n+ 1) symmetric matrix G by

(7.112) gij = −
∑

crossings c
incident to Bi,Bj

η (c)
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Figure 11. A checkerboard shading of a knot diagram.

η = 1 η = −1

Figure 12. The definition of η for each type of crossing.

for i 6= j. Then the diagonal entries gii are defined such that each row (and cell) sum is
0. Let G be the matrix resulting from deleting any row and corresponding column from G.
This is the Goeritz matrix for D (or L). One can show that G is a presentation matrix for

(7.113) H1 (Σ (L))

so

(7.114) |detG| = |H1 (Σ (L))| .
Let Γ be the graph with vertices corresponding to the black regions, and edges corre-

sponding to the crossings. This is called the Tate graph Γ of D. See fig. 13.
Now suppose D is alternating and connected. Then η is constant, say 1. So G has

entries given by

(7.115) gij = −# edges joining vi, vj

for i 6= j. This is called the Laplacian of Γ. Then we have the following classical theorem.

Theorem (Kirchhoff). Write t (Γ) for the number of spanning trees of Γ. Then detG =
t (Γ).
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Figure 13. A checkerboard shading of a knot, and the corresponding Tate graph.

. . .

. . .

Γ

. . .

. . .

Γ0 = Γ \ {e}

. . .

. . .

Γ∞ = Γ/e

Figure 14. Recall the three tangles in fig. 10, comprising the difference
between the links L, L0, and L∞. The associated Tate graphs around these
tangles look like this.

Proof of Lemma 7.14. We can assume D is connected. Then

|H1 (Σ (L))| = |detG (D)| = t (Γ)(7.116)

|H1 (Σ (L0))| = |detG (D0)| = t (Γ0)(7.117)

|H1 (Σ (L∞))| = |detG (D∞)| = t (Γ∞) .(7.118)

Locally the picture is as in fig. 14. Then we have:

{spanning trees of Γ} = {spanning trees of Γ 6⊃ e} q {spanning trees of Γ ⊃ e}(7.119)

= {spanning trees of Γ \ e} q {spanning trees of Γ/e}(7.120)

so

(7.121) t (Γ) = t (Γ \ {e}) + t (Γ/e)

and the result follows. �

Proof of Theorem 7.12. Define

(7.122) L = {L |L has a connected alternating diagram} .

If L is non-split alternating, then L ∈ L. If L ∈ L then define

(7.123) c∗ (L) = min {c (D) |D connected alternating diagram} .

We show that L ∈ L implies Σ (L) is an L-space by induction on c∗ (L).
If c∗ (L) = 0, then L is the unknot, so Σ (L) = S3.
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Now let c∗ (L) > 0. Let D be a connected alternating diagram of L such that c∗ (L) =
c (D). This implies D is reduced. Therefore D0 and D∞ are also connected (and obviously
alternating) so L0, L∞ ∈ L.

c∗ (L0) ≤ c (D0) c∗ (L∞) ≤ c (D∞)(7.124)

but both

c (D0) ≤ c (D) = c∗ (L) c (D∞) ≤ c (D) = c∗ (L)(7.125)

so we are done by induction. �

Theorem 7.15. Let L be a non-split alternating link. Then π1 (Σ (L)) is not LO.

Let D be a diagram of L. Define a group π (D) as follows. It has generators a1, . . . , an
corresponding to the arcs of D. The relations are given as follows. Whenever we have arcs
such as:

(7.126)

i j

k

then we mod out by:

(7.127) a−1
j aia

−1
j ak .

Lemma 7.16. π (D) ∼= π1 (Σ (L)) ∗ Z.

The proof is based on the Wirtinger presentation of π1 (X) = π1

(
S3 \ L

)
that comes

from D.

Proof of Theorem 7.15. Let D be a diagram of L. Then π1 (Σ (L)) LO implies
π (D) is LO by Theorem 2.8. Let < be a LO on π (D). The relation implies that

(7.128) a−1
j ai = a−1

k aj

which means

ai > aj ⇐⇒ a−1
j ai > 1(7.129)

⇐⇒ a−1
k aj > 1(7.130)

⇐⇒ aj > ak .(7.131)

So either

ai > aj > ak or ai < aj < ak or ai = aj = ak .(7.132)

Now suppose D is connected and alternating. Then let a = min {a1, . . . , an}. Now because
it is alternating,

(7.133) a1 = . . . = an

so π (D) ∼= Z, so

(7.134) π1 (Σ (L)) = 1

or it is not in fact LO. �



APPENDIX A

Homology and cohomology of groups

Lecture 17; March
31, 2020

1. Topological point of view

Let G be a group. Then we have two facts.

(i) There exists a CW-complex X such that π1 (X) ∼= G, and πi (X) = 0 for i ≥ 2.
(ii) Any two such complexes are homotopy equivalent.

Then we define

H∗ (X) = H∗ (X) H∗ (G) = H∗ (X) .(A.1)

But we want (co)homology with coefficients. So for A a ZG-modules, we define

H∗ (G;A) = H∗ (X;A) H∗ (G;A) = H∗ (X;A) .(A.2)

Let X̃ → X be the universal cover. Then π1

(
X̃
)

= 1, and πi

(
X̃
)

= πi (X) = 0 for i ≥ 2.

The point being that X̃ is contractible. Recall by the general theory of covering spaces that

G acts freely on X̃, and

(A.3) X̃/G = X .

Write Cq

(
X̃
)

for the cellular q-chains in X̃, i.e. the free ZG-module on the set of q-cells in

X. We get an augmented chain complex

(A.4) · · · Cq

(
X̃
)

Cq−1

(
X̃
)

· · · C1

(
X̃
)

C0

(
X̃
)

Z→ 0
∂q ε

where ε is induced by X̃ → pt. Since X̃ is contractible, H̃∗

(
X̃
)

= 0. Therefore eq. (A.4)

is exact. Let Z have the trivial ZG-module structure. I.e. g · a = a for all g ∈ G and all
a ∈ Z. Then

(A.5) Cq

(
X̃
)
⊗ZG Z ∼= Cq (X)

is just the cellular q-chains in X. Therefore

(A.6) H∗ (X) = H∗ (X;Z) ∼= H∗

(
C∗

(
X̃
)
⊗ZG Z

)
.

So now for A any left ZG-module, we define

(A.7) H∗ (G;A) = H∗ (X;A) = H∗

(
C∗

(
X̃
)
⊗ZG A

)
.

Remark A.1. Strictly speaking, C∗

(
X̃
)

should be a right ZG-module. But any left

ZG-module is a right ZG-module by letting the inverse act on the left:

(A.8) a · g := g−1a .

92
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Similarly, we define the cohomology to be:

(A.9) H∗ (G;A) = H∗ (X;A) = H∗
(

HomZG

(
C∗

(
X̃
)
, A
))

.

2. Algebraic point of view

Let Z be the trivial ZG-module as before. A free ZG-resolution of Z is an exact sequence

(A.10) · · · → Fq → Fq−1 → . . .→ F1 → F0 → Z→ 0

where Fq is a free ZG-module for all q ≥ 0. An example of this is eq. (A.4) from above.

Fact 5. Any two free ZG-resolutions are chain homotopy equivalent. Therefore

(A.11) H∗ (G;A) = H∗ (F ⊗ZG A)

and

(A.12) H∗ (G;A) = H∗ (HomZG (F,A)) .

Let

(A.13) Cq = Z
[
Gq+1

]
where q ≥ 0, with ZG-module defined by

(A.14) g · (g0, . . . , gq) = (gg0, . . . , ggq) .

Then define

(A.15) ∂q : Cq → Cq−1

by

(A.16) ∂q (g0, . . . , gq) =

q∑
i=0

(−1)
i
(g0, . . . , ĝi, . . . , gq) .

This is like the boundary map for any kind of homology theory, it ranges over the omission
of some “face”.

Then we get an augmented chain complex:

(A.17) · · · Cq Cq−1 · · · C1 C0 Z 0ε

where ε (g) = 1 for all g ∈ G.

Lemma A.1. The sequence (A.17) is exact.

Sketch proof. Let X0 = G. Suppose we have constructed Xn−1. Then to construct
Xn, for each (n+ 1)-tuple, (g0, . . . , gn) ∈ Gn+1, take a standard n-simplex, and attach to
Xn−1 along the faces. Then we get a CW-complex

(A.18) X =

∞⋃
n=0

Xn .

Note that G acts freely on X. Then the key point is that X is contractible. The idea is
that we have inclusions:

(A.19) (g0, . . . , gn) ⊂ (1, g0, . . . , gn) .

So we just strong deformation retract each cell to the vertex 1. This gives a strong defor-
mation retraction from X to the vertex 1. Therefore we get a strong deformation retraction
of all of X to the vertex 1. �
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Lemma A.2. Cq is a free ZG-module with basis

(A.20) {(1, g1, g1g2, . . . , g1g2 · · · gq) | gi ∈ G} .

We will write these tuples as:

(A.21) [g1| . . . |gq] .

Proof. G acts freely on Gq+1, Z
[
Gq+1

]
is a free Z-module on Gq+1, so Z

[
Gq+1

]
is

a free ZG-module on the set of orbits X/G. Then there is a one-to-one correspondence
between the orbits and this basis. �

So Lemma A.1 and Lemma A.2 imply that (A.17) is a free ZG-resolution of Z. This is
called the standard or bar resolution.

Lemma A.3.

(A.22) ∂ [g1| . . . |gq] = g1 [g2| . . . |gq]

+

q−1∑
i=1

(−1)
i
[g1| . . . |gi−1|gigi+1|gi+2| . . . gq] + (−1)

q
[g1| . . . |gq−1] .

Now we can identify [g1| . . . gq] with (g1, . . . , gq) ∈ Gq.
For A a ZG-module, we have a one-to-one correspondence

HomZG (Cq, A) ↔ {functions Gq → A}(A.23)

by Lemma A.2.
Recall the definition of the coboundary map. For an element u ∈ HomZG (Cq−1, A), we

have

(A.24) δu ∈ HomZG (Cq, A)

is defined by

(A.25) (δu) (c) = u (δc) .

Therefore, for f : Gq−1 → A, by Lemma A.3 we have that

(A.26) (δf) (g1, . . . , gq) = g1f (g2, . . . , gq)

+

q−1∑
i=1

(−1)
i
f (g1, . . . , gigi+1, . . . , gq) + (−1)

q
f (g1, . . . , gq−1) gq .

2.1. Examples in low-dimensions. Recall C0 was the free ZG-module on the 0-tuple
( ). Let C0

∼= ZG is the free abelian group on . Then the augmentation map ε : C0 → Z is
defined by ε (g) = 1 for all g ∈ Z. Then

(A.27) ∂1 : C1 → C0

is defined by

(A.28) ∂1 (g) = g ( )− ( ) = (g − 1) ( ) ,

or just ∂1 = g − 1. Then

(A.29) ∂2 : C2 → C1
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is defined by

(A.30) ∂2 (g, h) = g (h) = (gh) + (g)

and

(A.31) ∂3 (g, h, k) = g (h, k)− (gh, k) + (g, hk)− (g, h) .

Dually,

(A.32) δ0 : Hom (C0, A)→ Hom (C1, A)

takes f : ( )→ A to

(∂0f) (g) = f (∂1 (g)) = f ((g − 1) ( ))(A.33)

= (g − 1) f (( ))(A.34)

Then

(δ1f) (g, h) = f (∂2 (g, h))(A.35)

= gf (h)− f (gh) + f (g)(A.36)

for f : G→ A. Now for f : G×G→ A we get

(A.37) (δ2f) (g, h, k) = gf (h, k)− f (gh, k) + f (g, hk)− f (g, h) .

So this tells us that f is a 2-cocycle exactly when

(A.38) 0 = gf (h, k)− f (gh, k) + f (g, hk)− f (g, h) .

This is the 2-cocycle condition.
Lecture 18; 2020

3. Group extensions

Let G and A be groups. A group extension of G by A is a group E which fits into the
short exact sequence

(A.39) 1→ A→ E → G→ 1 .

Two such extensions are equivalent if and only if there exists a group homomorphism
ψ : E → E (which is necessarily an isomorphism) such that

(A.40)

E

1 A G 1

E

π

ψ

π′

commutes. Write E (G,A) for the equivalence classes of extensions of G by A. From now

on, A will be abelian.
Then (A.39) makes A a (left) ZG-module. For g ∈ G, let e ∈ E such that π (e) = g.

For a ∈ A, define

(A.41) g · a = eae−1 .

Note that

(A.42) A < Z (E) ,



3. GROUP EXTENSIONS 96

where Z (E) is the center of E, if and only if A is a trivial ZG-module. In this case we say
(A.39) is a central extension.

We say (A.39) splits iff there is some homomorphism σ : G→ E such that

(A.43) πσ = idG .

This is equivalent to E be the semidirect product

(A.44) E = AoG .

Set theoretically this is the cartesian product, and the group structure is given by:

(A.45) (a, g) · (b, h) = (a+ gb, gh) .

If A is a trivial ZG-module, then AoG is just the direct product A×G.
For any extension eq. (A.39), we can define a set-theoretic section s : G→ E. Then we

can define

(A.46) f : G×G→ A

by

(A.47) f (g, h) = s (g) s (h) s (gh)
−1 ∈ A .

Then s is a homomorphism if and only if f (g, h) = 0 for all g, h ∈ G.

Lemma A.4. f determines the extension (A.39) (up to equivalence).

Proof. First, note that, as a set, E is just A×G. In particular:

(A.48)
A×G E

(a, g) a · s (g)

.

So we just need to know the multiplication. Pulling back the multiplication in E, we get

(a, g) · (b, h) = a · s (g) · b · s (h)(A.49)

= a · s (g) bs (g)
−1 · s (g) s (h)(A.50)

= a · s (g) bs (g)
−1
f (g, h)︸ ︷︷ ︸

∈A

s (g, h)(A.51)

= (a+ gb+ f (g, h) , gh)(A.52)

so the multiplication is determined by f . �

Lemma A.5. f : G×G→ A is a 2-cocycle in HomZG (Cq, A).

Proof. Multiplication in E is associative:

(A.53) ((a, g) (b, h)) (c, k) = (a, g) ((b, h) (c, k)) .

By Lemma A.4, we have

LHS = (a+ gb+ f (g, h) , gh) (c, k)(A.54)

= (a+ gb+ f (g, h) + (gh) c+ f (gh, k) , ghk) .(A.55)

Then we have

RHS = (a, g) (b+ hc+ f (h, k) , hk)(A.56)

= (A+ gb+ ghc+ gf (h, k) + f (g, hk) , ghk) .(A.57)
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Therefore:

(A.58) gf (h, k)− f (gh, k) + f (g, hk)− f (g, h) = 0 .

But this is exactly the 2-cycle condition from (A.38). But this implies

(A.59) (δ2f) (g, h, k) = 0

for all g, h, k, so δ2f = 0 ∈ HomZG (C3, A). �

One can show that:

(1) the class [f ] ∈ H2 (G;A) is independent of s;
(2) sending extensions (A.39) to [f ] ∈ H2 (G;A) gives a bijection:

(A.60) E (G,A)↔ H2 (G;A) .

A special case of this bijection is the correspondence between equivalence classes of central
extensions of G by Z, and H2 (G;Z).

3.1. Central extensions. Given an extension eq. (A.39) and a homomorphism ϕ : G′ →
G, we get an extension of g′ by A given by the pullback of eq. (A.39) by ϕ. Explicitly this
is given by:

(A.61) E′ = {(g′, e) ⊂ G′ × E |ϕ (g′) = π (e)} .
We get a commutative diagram

(A.62)

0 A E G 1

0 A E′ G′ 1

π

ψ

π′

.

Then we define π′ (g′, e) = g′, and ψ (g′, e) = e.

Exercise A.1. Check that this commutes.

So we get an extension:

(A.63) 0→ A→ E′ → G′ → 0 .

Lemma A.6. If (A.39) corresponds to α ∈ H2 (G;A), then (A.63) corresponds to ϕ∗ (α) ∈
H2 (G′;A).

Proof. Recall the definition of ϕ∗ : Hq (G,A) → Hq (G′;A). Let f : Gq → A be a
q-cocycle such that [f ] = α ∈ Hq (G;A). Then we define

(A.64) f ′ : (G′)
q → A

by

(A.65) f ′
(
g′1, . . . , g

′
q

)
= f

(
ϕ (g′1) , . . . , ϕ

(
g′q
))

.

Then

(A.66) ϕ∗ (α) = [f ′] ∈ Hq (G′;A) .

Now we check that this holds for (A.39) and (A.63) as above. So we have the diagram

(A.67)

0 A E G 0

0 A E′ G′ 0

π

s

π

ψ

s′

ϕ .
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Define s′ : G′ → E′ by

(A.68) s′ (g′) = (g′, e)

for any e such that ϕ (g′) = π (e). Then define s such that

(A.69) s (ϕ (g′)) = e

as above. So we have

ψs′ = sϕ and ψ|A = id .(A.70)

Now

f (ϕ (g′) , ϕ (h′)) = sϕ (g′) sϕ (h′) (sϕ (g′h′))
−1

(A.71)

= ψs′ (g′)ψs′ (h′) (ψs′ (g′h′))
−1

(A.72)

= ψ
(
s′ (g′) s′ (h′) s′ (g′h′)

−1
)

(A.73)

= s′ (g′) s′ (h′) s′ (g′h′) .(A.74)

�

Theorem A.7. Let the extension (A.39) correspond to α ∈ H2 (G;A). Then ϕ : G′ → G
lifts to ϕ̃ : G′ → E (i.e. πϕ̃ = ϕ) if and only if

(A.75) ϕ∗α = 0 ∈ H2 (G′;A) .

Proof. Recall that (A.63) splits iff ϕ∗ (α) = 0. (⇐=): ϕ∗ (α) = 0 implies (A.63) splits.
Let σ′ : G′ → E′ be a splitting homomorphism. Then

(A.76) ψσ′ = ϕ̃

is a lift of ϕ.
( =⇒ ):Recall

(A.77) E′ = {(g′, e) ∈ G′ × E |ϕ (g′) = π (e)} .
Then define σ′ : G′ → E′ by

(A.78) σ′ (g′) = (g′, ϕ̃ (g′)) .

This is clearly a homomorphism and

(A.79) π′σ′ = idG′

so this is a splitting, and ϕ∗α = 0. �



APPENDIX B

Orderings of the braid group

Lecture 9 (Hannah
Turner); February
18, 2020

We will follow [DDRW].
Let z1, . . . , zn ∈ D2. A braid on n strands is a subset β ⊂ D2× I such that β is a union

of smoothly embedded intervals (called strands) in D2 × I such that

(1) β ∩
(
D2 × {1}

)
= {(z1, 1) , . . . , (zn, 1)},

(2) β ∩
(
D2 × {0}

)
= {(z1, 0) , . . . , (zn, 0)},

(3) β t
(
D2 × {t}

)
in n points.

We should think of braids as these strands weaving around one another as in fig. 1.
We say two braids are equivalent if there is a deformation from one to the other through

braids. There is an operation on braids called stacking. This takes two braids and stacks
them to make a new braid.

Figure 1. A braid on 3 strands.
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i i+ 1

. . . . . .

Figure 2. The generator σi of Bn.

hσi−−→
zi zi+1

zi+1

zi

Figure 3. The half-Dehn twist about the straight arc connecting zi and zi+1.

Theorem B.1 (Artin). The set of n-strand braids form a group Bn with group operation
given by stacking. In particular, it has the following presentation:

(B.1) Bn =

〈
σ1, . . . , σn−1

∣∣∣∣ |i− j| > 1 =⇒ σiσj = σjσi ,
σiσi+1σi = σi+1σiσi+1

〉
.

Geometrically, the generators σi correspond to braids as in fig. 2. Now a braid β is an
equivalence class of words in the σi.

There is a map Bn → MCG (Dn) from the braid group to the mapping class group
of Dn, i.e. the group of orientation preserving homeomorphisms of D2 with n punctures
such that the punctures are fixed setwise, and ∂D2 is fixed pointwise. The map sends the
generators

σi 7→ hσi : Dn 	

to half-Dehn twists about the straight arc connecting zi and zi+1. See fig. 3.

Claim B.1. This map is an isomorphism.

1. Dehornoy’s ordering

Definition B.1. A braid word w is said to be σ-positive (resp. σ-negative) if, among
the letters σ±1

i that occur in w, the one with lowest index occurs with only positive (resp.

negative) exponent, i.e. σi occurs but not σ−1
i . In this case we say w is σi positive.
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Remark B.1. Usually we don’t care for which i the word is σi positive. In this scenario
we just say ω is σ-positive.

Example B.1. σ1σ2 and σ1σ
−1
2 are both σ1 positive. σ−1

1 σ2 is σ1-negative.

Warning B.1. Some braids are neither, e.g. σ−1
2 σ3σ2.

Definition B.2. We say 1 <Deh β if β is σ-positive.

Note β1 <Deh β2 iff 1 <Deh β1β2.

Theorem B.2 (Dehornoy). The above definition for <Deh defines an LO on Bn.

Proof idea. We use the following properties to prove the theorem.

• Property A (Acyclicity): a σ-positive word is always nontrivial.
• Property C (Comparison): Every nontrivial braid of Bn admits an n-strand rep-

resentative word that is σ-positive or σ-negative.

Write Pn for the positive braids on n-strands. We will show that Pn is a positive cone.

(1) Pn is closed: let β1, β2 ∈ Bn. If β1 is σi-positive, β2 is σj positive for i ≤ j. Then
β1β2 is σi positive. For example:

β1 = σ1σ2σ3σ
−1
2(B.2)

β2 = σ2σ3σ2σ
−1
3(B.3)

β1β2 = σ1σ2σ3σ3σ2σ
−1
3 .(B.4)

(2) Bn \{1} = Pn∪P−1
n : property A implies 1 6∈ Pn and then property C implies this.

(3) Disjoint union: Suppose β ∈ Pn ∩ P−1
n . Then β−1 ∈ Pn, so ββ−1 = 1 ∈ Pn which

is a contradiction.

�

Proposition B.3. Bn for n ≥ 3 is not BO.

Proof. Define

∆n = (σ1 . . . σn−1) (σ1 . . . σn−2) . . . (σ1σ2)σ1 .

For example, see fig. 4 for ∆4.

Claim B.2. ∆nσi = σn−i∆n.

Now suppose ≺ is a BO on Bn. WLOG σ1 ≺ σn−1 implies

∆nσ1∆−1
n︸ ︷︷ ︸

σn−1

≺ ∆nσn−1∆−1
n︸ ︷︷ ︸

σ1

so σn−1 ≺ σ1, so
∆nσi∆

−1
n = σn−i∆n∆−1

n = σn−i

which is a contradiction. �

Remark B.2. (1) For each n, two elements of (Bn, <Deh) can be compared in
polynomial time (in the length of words).

(2) This ordering has applications to knot theory. If β ∈ Bn and β < ∆−6
n or β > ∆g

n,

then its closure β̂ is prime.

Definition B.3. (1) An LO group (G,<) is Conradian if for all g, h > 1, there
is some p ∈ Z+ with h < ghp.

(2) (G,<) is Archimedean if for all g, h > 1, there is p ∈ Z+ with g < hp.

Proposition B.4. (Bn, <Deh) is not Conradian nor Archimedean.
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Figure 4. The braid ∆4.

2. Nielsen-Thurston orderings on Bn

Definition B.4. Suppose G

� R by orientation preserving homeomorphisms and there
is x ∈ R with StabG (x) = {1}. Then (G,<x) is defined by declaring g <x g

′ iff g (x) <R
g′ (x).

Remark B.3. (1) This is an LO since G < Homeo+ (R).
(2) Using y ∈ R, y 6= x could give a different ordering.

The goal is to get an action Bn

� R.

We can give Dn a hyperbolic metric. D̃n is a subset of H2. Now compactify H2 by

adding S1
∞. Compactify D̃n by adding in limit points of lifts of ∂Dn. This is a closed disk

D̃n. ∂D̃n has two types of points:

(1) limit points, and
(2) arcs which cover ∂Dn.

Now pick a basepoint ?. For each b ∈ Bn, take β 7→ hβ : Dn 	 . Note that hβ has many

lifts in D̃n. Pick one h̃b that fixes the basepoint. Now since ∂D̃n \ {?} ∼= R, we can restrict

h̃β to ∂D̃n \ {?} to get an action on R. Then it turns out this is all well-defined.

Definition B.5. An LO < on Bn is of Nielsen-Thurston type if there is some x ∈ R
such that for all β, β′ ∈ Bn β < β′ iff β (x) <R β

′ (x).

Fact 6. (1) Some choices x ∈ R have non-trivial stabilizer. These cannot give an
ordering.

(2) Some choices x 6= y ∈ R give the same ordering.
(3) Uncountably many of them are distinct.

3. Isolated orderings

Recall LO’s on G correspond to positive cones.
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Definition B.6. An ordering < in LO (G) is finitely determined if there is a finite
subset S = {g1, . . . , gk} ⊂ G such that < is the unique LO on G such that S is positive.

Example B.2. (1) (Z, <) is determined by choosing {1} ⊂ P .
(2) If P ⊂ G is finitely generated as a semi-group then the order < determined by P

is finitely determined.
(3) K =

〈
a, b
∣∣ aba−1 = b−1

〉
is determined by {a, b}.

Proposition B.5. A points in LO (G) is isolated iff < is finitely determined.

Proof. (⇐=): Suppose that <∈ LO (G) is finitely determined by f1, . . . , fm. Recall

LO (G) ⊂ {0, 1}G. A basis for the topology is given by sets of the form:

(B.5) B =


g1, . . . , gk︸ ︷︷ ︸

yes

, h1, . . . , hl︸ ︷︷ ︸
no

, . . .︸︷︷︸
whatever

 ∩ LO (G) .

Now we can impose that

(1) The set of g ∈ G which we say “yes” to is closed,
(2) never say “yes” to both g and g−1

(3) never say “no” to g and g−1.

Then for

(B.6) U =
{(
f1, . . . , fm, f

−1
1 , . . . , fm, . . .

)}
there is no other order inside U , so < is isolated.

( =⇒ ): Assume <∈ LO (G) is isolated. There is an open set U such that < is the only
element of LO (G). Write <∈ B ⊂ U where B is of the form (B.5). Then

(B.7) P ⊃
{
g1, . . . , gk, h

−1
1 , . . . , h−1

l

}
so < is finitely determined. �

Definition B.7 ([DD]). Let PDD be the set of β ∈ B3 such that β is σ1-positive or
σ2-negative.

Theorem B.6. PDD is a positive cone, and is generated as a semigroup by σ1σ2 and
σ−1

2 .

Proof. We will assume that a σi-positive word is never trivial. We will also assume
that either β is σ1-positive or σ1-negative or σ1-free. Note that this implies σ1-free braids
are always σ2-positive or σ2-negative.

Now we show PDD is a positive cone. Write Q =
〈
σ1σ2, σ

−1
2

〉
. This is a semigroup.

Write β1 = σ1σ2 and β2 = σ−1
2 . It is immediate that Q ⊂ PDD. Now we show the opposite.

We have two cases:

Case 1. β or β−1 is σ2-positive: Then β = σp2 for some p ∈ Z \ {0}. For p > 0 we have
β−1 ∈ Q, and for p < 0 we have β ∈ Q−1.

Case 2. β is σ1-positive: then there are mi ∈ Z, 1 ≤ i ≤ k, such that

β = σm1
2 σ1σ

m2
2 σ1 . . . σ1σ

mk
2(B.8)

= βP1
2 β1β

P2
2 β1 . . . β1β

Pk
2(B.9)

for some Pi ∈ Z. Then we have

(B.10) β2β
2
1β2 = β1



3. ISOLATED ORDERINGS 104

so we can cancel things and keep replacing β1 by this, until all exponents of β2 are
positive, so β ∈ Q.

Case 3. β is σ1-negative: so β−1 is σ1-positive, so β−1 ∈ Q by case 2.

Then this means <DD is an ordering on Bn, so it is isolated in LO (G). �



APPENDIX C

Orderability and knot groups

Lecture 10
(Jonathan Johnson);
February 20, 2020

A smooth knot in S3 is a (smooth) embedding K : S1 ↪→ S3. The knot complement of
K is

(C.1) XK := S3 \ int (ν (K)) .

The knot group of K is π1 (XK) =: π1 (K).

Proposition C.1. H1 (XK) ∼= Z.

Proof. The idea is to use Mayer-Vietoris with ν (K) and XK . This gives us the
sequence

H2

(
S3
)︸ ︷︷ ︸

=0

→ H1 (ν (K) ∩XK)︸ ︷︷ ︸
=Z⊕Z

→ H1 (ν (K))︸ ︷︷ ︸
=Z

⊕H1 (Xk)→ H1

(
S3
)︸ ︷︷ ︸

=0

so the result follows from exactness. �

Theorem C.2. Suppose M is a prime orientable three-manifold with π1 (M) finitely
generated. Then π1 (M) is locally indicable iff rankH1 (M) ≥ 1.

Recall if π1 (M) is BO then π1 (M) is locally indicable, which implies π1 (M) is LO.

Corollary C.3. If rankH1 (M) ≥ 1 then π1 (M) is LO.

Corollary C.4. Knot groups are LO.

1. Generalized torsion

An element g in a group G is a generalized torsion element if and only if

α−1
1 gn1α1α

−1
2 gn2α2 . . . α

−1
k gnkαk = 1

for some α1, . . . , αn ∈ G and n1, . . . , nk ∈ Z+. As it turns out, if G has a generalized torsion
element, then G is not BO.

Example C.1. Consider the Klein bottle group
〈
a, b
∣∣ a−1bab = 1

〉
. The element b is a

generalized torsion element.

Remark C.1. There are non BO groups without generalized torsion.

The following is open: π1 (M) is BO iff π1 (M) has no generalized torsion.
A torus knot is a knot in S3 which embeds in a Heegaard torus. So this is some simple

closed curve on the torus. We know that these are parameterized by some rational number

p

q
∈ Q ∪

{
1

0

}
.

Write Tp,q for the associated knot. Note that Tp,q is the unknot iff |p| = 1 or |q| = 1.

Exercise C.5. π1 (Tp,q) = 〈a, b | ap = bq〉.

105
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Proposition C.6. If Tp,q is nontrivial, then π1 (Tp,q) has generalized torsion.

Proof. Assume p, q > 1. Write [x, y] = x−1y−1xy. Note the following identities:

[xn, y] = x−1
[
xn−1, y

]
x [x, y](C.2)

[x, yn] = [x, y] y−1
[
x, yn−1

]
y .(C.3)

�

Exercise C.7. [ap, bq] is a product of conjugates of [a, b].

[a, b] 6= 1, but [ap, bq] = 1 so [a, b] is a generalized torsion element.

Corollary C.8. π1 (Tp,q) is not BO.

Corollary C.9. G locally indicable does not imply G is BO.

2. Knot groups as extensions

Let Y := [π1 (K) , π1 (K)]. Since H1 (XK) ∼= Z we have a short exact sequence

(C.4) 1⊗ Y → π1 (K)
ρ−→ Z→ 1 .

Let µ ∈ ρ−1 (1). Define

ϕµ ∈ Aut (Y )

by

y 7→ µ−1yµ .

Exercise C.10. π1 (K) is BO iff there is an order on Y invariant under ϕµ.

Proposition C.11. π1 (K1#K2) is BO iff π1 (K1) is BO and π1 (K) is BO.

The lower central series is as follows. Define Y1 = Y , and

(C.5) Yn = [Yn−1, Y ]

for n > 1. Notice that Yn/Yn+1 is abelian. Define Yn to be the preimage of Tor (Y/Yn+1)
under the quotient. Write An := Yn/Yn+1.

Fact 7. (1) Yb/Yn+1 is a torsion free abelian group.
(2) Yn are characteristic.

This implies that ϕM induces a well-defined

ϕn ∈ Aut
(
Yn/Yn+1

)
.

A group G is nilpotent if Gn = {1} for some n.

Exercise C.12. Y is residually torsion-free nilpotent if and only if⋂
n

Yn = {1} .

Proposition C.13. If Y is residually torsion-free nilpotent and there are orders <n on
each quotient An invariant under ϕn then π1 (K) is BO.
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Proof. We know

(C.6)
⋂
n

Yn = {1}

so for y ∈ Y \ {1} there is a unique n (y) such that y ∈ Yn and y 6∈ Yn+1, so

[y]n(y) ∈ An
is not 0. We have positive cones Pn ⊂ An invariant under ϕn. Now write

(C.7) P =
{
y ∈ Y

∣∣∣ y 6= 1, [y]n(y) ∈ Pn(y)

}
.

(1) Y = P q P−1 q {1} is clear.
(2) Let y1, y2 ∈ P , ni := n (yi). If n1 < n2 then y1, y2 ∈ Yn1

. Then

[y1, y2]n1
= [y1]n1

+���[y2]n2
= [y1]n1

∈ Pn1
.

The case that n1 > n2 is similar. If n1 = n2, then

[y1, y2]n1
= [y1]n1

+ [y2]n1=n2
∈ Pn

Therefore y1y2 ∈ P . So this shows us that this is an LO. Now we want to see it is
a BO.

(3) Let p ∈ P , y ∈ Y . Since p ∈ Yn(p) we have that [p, q] ∈ Yn(p)+1. Now

y−1py = pp−1y−1py = p [p, y]

so [
y−1py

]
n(p)

= [p]n(p) +������[
p−1y−1py

]
so this is in Pn(p), so y−1py ∈ P .

(4) We know n (ϕµ (p)) = n (p), so

[ϕµ (p)]n(p) = ϕn

(
[p]n(p)

)
∈ Pn

so ϕm (p) ∈ P .

Therefore by an earlier proposition π1 (K) is BO. �

So we have orders An invariant under ϕn. Now define

Vn := Q⊗Z An Ln := idQ⊗Zϕn .(C.8)

Notice that this is a vector space and a linear map on it.C.1

Lemma C.14. Ln preserves an order on Vn if and only if every irreducible factor of the
characteristic polynomial ch (Ln) has a real positive root.

Lemma C.15. There is an embedding Vn
ι
↪−→ V ⊗n1 such that

(C.9)

Vn V ⊗n1

Vn V ⊗n1

Ln L⊗n1

ι

.

Proposition C.16. If ch (L1) has all real positive roots then there are orders on the An
invariant under the ϕn.

C.1Which is of course a mathematician’s bread and butter.
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Figure 1. The figure-eight knot.

So by definition L1 = idQ⊗ϕ1, where ϕ1 is the automorphism of Y/Y2 induced by ϕµ

which is conjugate to a scalar multiple of the action on H1

(
X̃,Q

)
induced by the meridian.

Then ch (L1) is a scalar multiple of the Alexander polynomial ∆K (t).

Theorem C.17. If Y is residually torsion-free nilpotent and ∆K (t) has all real positive
roots then π1 (K) is BO.

Example C.2. Consider the figure-eight knot as in fig. 1. This has Alexander polyno-
mial

(C.10) ∆K (t) = t2 − 3t+ 1 .

Then YK ∼= F2, and free groups are residually torsion-free nilpotent. So π1 (K) is BO.
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